A cura di Giulio Tagliavini

per la finanza e il management

L'utilizzo del foglio di calcolo nei principali problemi di finanza aziendale e management

con CD

2^ª edizione

11 Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

di Tiziano Bellini e Marco Riani

TEMATICHE AFFRONTATE NEL CAPITOLO

Finanza

Rilevanza economica dei tassi di interesse bancari.

Excel

Modelli di regressione, funzione REGR.LIN, componenti aggiuntivi "Analisi dei dati" e "Risolutore".

11.1 Il problema finanziario

Gli istituti di credito, come è noto, sono impegnati nelle due distinte attività di raccolta fondi ed erogazione prestiti svolgendo un ruolo di collegamento tra risparmiatori e investitori (Pavarani, 2001). Nel tentativo di massimizzare il profitto, quando i tassi di interesse aumentano, le banche cercano di aumentare il prima possibile i tassi di interesse attivi, mantenendo il più possibile invariati i tassi passivi. All'opposto, nel caso di riduzione dei tassi, le banche cercano di diminuire tempestivamente i tassi sulla raccolta fondi e mantenere per il maggior tempo possibile i tassi attivi invariati. Asimmetrie informative e razionalità limitata impediscono spesso ai clienti (imprese che ricorrono a prestito bancario o risparmiatori) di richiedere un immediato adeguamento dei propri tassi di interesse ai tassi di mercato, attribuendo alle banche un beneficio legato a tale vischiosità.

L'obiettivo del presente lavoro è quello di definire un modello al fine di valutare quando e in che misura le banche aggiustano i propri tassi di interesse sul versante degli *assets* e su quello delle *liabilities*. In particolare, si farà riferimento a un modello lineare e a un modello non lineare.

Il presente capitolo è organizzato come segue: nella sezione numero due si discute il legame relativo all'adeguamento dei tassi di interesse bancari rispetto ai tassi di mercato e il meccanismo di trasmissione di politica monetaria nel sistema economico. Nella terza sezione viene introdotto il modello per la stima di elasticità e vischiosità dei tassi di interesse bancari. Nella quarta sezione si mostra come i parametri del modello precedentemente introdotto possano essere stimati utilizzando Microsoft Excel e si richiamano una serie di statistiche per calcolare la significatività delle variabili esplicative. L'ultima sezione contiene riflessioni conclusive.

11.2 Rilevanza economica dello studio della vischiosità dei tassi di interesse bancari

In letteratura sono stati effettuati una serie di studi empirici per studiare gli effetti di manovre di politica monetaria utilizzando la relazione anticipatrice degli aggregati monetari rispetto all'economia reale (ad es. Kashyap *et al.*, 2002). Recenti analisi hanno evidenziato che i tassi di interesse hanno un potere predittivo molto più accentuato rispetto agli stock/flussi con cui vengono abitualmente misurate le grandezze monetarie. Risulta ragionevole, quindi, utilizzare i tassi di interesse come strumenti per comprendere le manovre di politica monetaria adottate dai *policy*

Enrico Moretto

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

makers. Una manovra restrittiva (aumento dei tassi) indebolisce il bilancio dei soggetti che fanno ricorso a finanziamenti esterni, aumentando il costo della raccolta fondi e riducendo la capacità di offrire garanzie collaterali e merito di credito (sub-canale del bilancio). A sua volta, la difficoltà degli istituti di credito di reperire fondi addizionali per erogare prestiti, può produrre conseguenze negative sulla possibilità delle banche di continuare a erogare prestiti, con ovvie conseguenze negative sui soggetti finanziati (*banking lending channel* – Kishan and Opiela, 2000). Viceversa, una diminuzione dei tassi aumenta la capacità di raccogliere fondi da parte delle banche (*core deposit funding*) e, allo stesso tempo, rafforza la capacità di intervento sul bilancio dei soggetti che richiedono finanziamenti, mettendo in moto un meccanismo di crescita (Tagliavini, 1999).

Dato il ruolo di primo piano che i tassi di interesse rivestono nello studio delle politiche monetarie rispetto ad altre grandezze macroeconomiche (Klein, 1971; Lusignani, 1996), diventa cruciale cercare di stimare il ritardo con cui il mercato e il sistema bancario reagiscono alle manovre di politica monetaria decise dai *policy makers*, tenendo presente che le frizioni presenti nell'economia reale impediscono alle imprese di reagire immediatamente a variazioni di politiche monetarie. In particolare, nelle sezioni seguenti, si concentra l'attenzione sul legame che intercorre tra tassi bancari e tassi di mercato. Si sottintende che l'impatto delle politiche monetarie venga recepito attraverso i tassi di mercato.

11.3 Il modello statistico

In letteratura sono stati proposti diversi approcci per modellare il rapporto intercorrente tra tassi di mercato e tassi bancari attraverso sistemi di equazioni simultanee (ad esempio Weth, 2002). In questa sezione e nella seguente vengono proposti approcci alternativi alla rappresentazione del legame intercorrente tra le variabili di interesse. Nello specifico, nella sezione corrente si fa riferimento a un modello di regressione lineare multivariato, mentre nella sezione seguente ci si rifa a un modello non lineare con vincoli nello spazio dei parametri. L'attenzione è particolarmente rivolta a:

- evidenziare l'elasticità di reazione dei tassi bancari rispetto a variazioni nei tassi di mercato;
- 2) determinare il ritardo di adeguamento (vischiosità).

A tale riguardo si fa riferimento a quanto segue:

- tassi attivi bancari: tassi di interesse bancari sui prestiti in euro alle società non finanziarie;
- tassi passivi bancari: tassi di interesse bancari sui depositi in euro di famiglie e società non finanziarie;
- tassi di mercato: tassi interbancari (euribor).

Si assuma che y_t sia il tasso di interesse bancario al primo giorno del mese *t*-esimo (si può fare riferimento sia a tassi attivi, sui prestiti, sia a tassi passivi, sui depositi) e x_t sia il tasso di interesse di mercato (tasso di interesse interbancario euribor) al momento *t*-esimo (*t*=1, ..., *T*).

Al fine di cogliere la relazione tra tassi bancari e tassi di mercato, anziché fare riferimento ai livelli assoluti di tali tassi, si ritiene opportuno considerare le variazioni Δy_t e Δx_t . È possibile formalizzare il modello nel modo seguente:

$$\Delta y_{t} = \alpha + \beta_{0} \Delta x_{t} + \beta_{1} \Delta x_{t-1} + \dots + \beta_{k} \Delta x_{t-k} + \varepsilon_{t}, \qquad \varepsilon_{t} \sim i.i.d.(0, \sigma_{\varepsilon}^{2})$$
(1)

ove $\Delta y_i = y_i - y_{i-1}$, $\Delta x_i = x_i - x_{i-1}$, $t=k+2, k+3, ..., T \in \varepsilon_i$ è la successione delle variabili aleatorie indipendenti e identicamente distribuite (i.i.d.) che rappresentano i termini di disturbo (per approfondimenti sulle assunzioni relative agli errori si veda ad esempio, Riani e Laurini, 2008 oppure Greene, 1993).

Tiziano Bellini e Marco Riani

I parametri β_j (j=0, indipendenti vengono recej esempio, un valore di β_0 contemporanea del tasso di corrisponde un incremento a 0.7.

La costante α indica sono pari a zero. In questo variazioni nel tasso interba

Quando si applica dell'analisi. A tal fine, nel quadrati dei residui. In altr ..., b_k utilizzando la condiz

$$\sum_{i=0}^{T} (\Delta y)$$

In altri termini, se r otteniamo che la somma ($a, b_0, ..., b_k$.

- Dopo aver stimato i 1) valutare, la bon
- dipendente spie
- testare la signivariabile rispost
- 3) testare la signif
- dipendente (trar

4) analizzare i resi

L'obiettivo della : utilizzando Microsoft Ex

11.4 Analisi stat Microsoft E

Ai fini dell'analis armonizzate sono otter applicazione del Regola banche, che rappresent creditizio italiano. Nell fusione, incorporo e sc operazioni relative alle rilevazione campionan L'armonizzazione delle italiane, Banca d'Italia statistiche, ottobre 200 Nello specifico,

gennaio 2010, aventi c

Un modello statistico per l'a

bilancio dei soggetti che fanno fondi e riducendo la capacità di ncio). A sua volta, la difficoltà stiti, può produrre conseguenze restiti, con ovvie conseguenze and Opiela, 2000). Viceversa, di da parte delle banche (core nto sul bilancio dei soggetti che ita (Tagliavini, 1999).

no nello studio delle politiche 971; Lusignani, 1996), diventa tema bancario reagiscono alle presente che le frizioni presenti umente a variazioni di politiche zione sul legame che intercorre elle politiche monetarie venga

are il rapporto intercorrente tra tanee (ad esempio Weth, 2002). nativi alla rappresentazione del >, nella sezione corrente si fa nella sezione seguente ci si rifà L'attenzione è particolarmente

petto a variazioni nei tassi di

stiti in euro alle società non

iti in euro di famiglie e società

no del mese *t*-esimo (si può fare siti) e x_t sia il tasso di interesse imo (t=1, ..., T). cato, anziché fare riferimento ai iazioni Δy_t e Δx_t . È possibile

 $\overline{\Sigma}_{\varepsilon}^{2}$)

è la successione delle variabili entano i termini di disturbo (per sempio, Riani e Laurini, 2008 I parametri β_j (*j*=0, 1, ..., k) sono espressione della misura in cui gli shock delle variabili indipendenti vengono recepiti dalla variabile dipendente in corrispondenza dei diversi tempi. Ad esempio, un valore di β_0 pari a 0.7 segnala che a un incremento unitario della variazione contemporanea del tasso di interesse di mercato (tenendo fisse le variazioni nei tempi precedenti), corrisponde un incremento nella variazione del tasso medio di interesse applicato dalle banche pari a 0.7.

La costante α indica il valore teorico del fenomeno quando i valori delle variabili esplicative sono pari a zero. In questo caso, indica la variazione del tasso di interesse bancario in assenza di variazioni nel tasso interbancario euribor.

Quando si applica un modello, la stima dei parametri costituisce il momento cruciale dell'analisi. A tal fine, nel caso in esame, si ricorre alla cosiddetta minimizzazione della somma dei quadrati dei residui. In altre parole, i parametri α , β_j (*j=0, 1, ..., k*) vengono stimati attraverso *a, b*₀, ..., *b*_k utilizzando la condizione dei minimi quadrati, ossia minimizzando l'espressione:

$$\sum_{t=6}^{T} (\Delta y_t - a - b_0 \Delta x_t - b_1 \Delta x_{t-1} - \dots - b_4 \Delta x_{t-4})^2 .$$
⁽²⁾

In altri termini, se nell'equazione (2) sostituiamo qualsiasi altra combinazione di parametri, otteniamo che la somma dei quadrati degli scostamenti è non inferiore rispetto a quella associata a $a, b_0, ..., b_k$.

Dopo aver stimato i parametri, occorre effettuare i seguenti passi:

- valutare, la bontà di adattamento del modello, ossia la quota di varianza della variabile dipendente spiegata dal modello (utilizzando la statistica R²);
- testare la significatività della relazione tra l'insieme delle variabili indipendenti e la variabile risposta (tramite la statistica F);
- testare la significatività delle relazione tra le singole variabili esplicative e la variabile dipendente (tramite i test t);
- 4) analizzare i residui per verificare la presenza di eventuali valori anomali.

L'obiettivo della sezione che segue è quello di capire come affrontare i passi precedenti utilizzando Microsoft Excel.

11.4 Analisi statistica delle relazioni tra i tassi di interesse utilizzando Microsoft Excel

Ai fini dell'analisi si fa riferimento alla base dati pubblica di Banca d'Italia. Le statistiche armonizzate sono ottenute dal gennaio 2003 mediante una rilevazione campionaria mensile, in applicazione del Regolamento BCE 2001/18. Alla fine del 2007, il campione era composto da 122 banche, che rappresentavano l'81 per cento dei prestiti e l'86 per cento dei depositi del sistema creditizio italiano. Nelle singole date di riferimento il campione riflette le eventuali operazioni di fusione, incorporo e scorporo. I tassi di interesse riguardano le consistenze in essere e le nuove operazioni relative alle principali forme di raccolta e di impiego. Per i dettagli metodologici sulla rilevazione campionaria e per i criteri di selezione del campione si rimanda al documento *L'armonizzazione delle statistiche europee sui tassi di interesse bancari e le scelte metodologiche italiane*, Banca d'Italia, Supplementi al Bollettino Statistico - *Note metodologiche e informazioni statistiche*, ottobre 2003.

Nello specifico, di seguito, vengono utilizzate le seguenti serie storiche, dal gennaio 2003 al gennaio 2010, aventi cadenza mensile:

Tiziano Bellini e Marco Rian

(1)

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

- tassi di interesse bancari sui prestiti in euro alle società non finanziarie: nuove operazioni, tavola TTI30100, prestiti fino a 1 milione di euro, periodo di determinazione iniziale del tasso fino a un anno (S165241M);
- tassi di interesse bancari sui depositi in euro di famiglie e società non finanziarie: consistenze, tavola TTI30500, depositi in conto corrente società non finanziarie (S108594M);
- altri tassi di interesse bancari e tassi interbancari, tavola TT130600, tassi interbancari (MID), 1 mese (S058923M).

La figura 1, che riporta l'andamento dei tassi di cui sopra, mostra che nel periodo gennaio 2003-gennaio 2010 i tassi presentano un andamento generalmente crescente. Al contrario, da novembre 2008, a seguito della crisi economica, fino al gennaio 2010 i tassi decrescono.

Per stimare con Excel i parametri del modello di regressione riportato nell'equazione (1) è utile inserire, in colonne diverse, le serie associate rispettivamente alla variabile dipendente e alle variabili esplicative (Riani, 2002). I dati di partenza si trovano nel foglio denominato "Modello lineare" del file "tassi-input.xls" e sono riportati nella zona B2:C86 (figura 2).

31/01/2003 28/02/2003 31/03/2003 30/04/2003 5 31/05/2003 30/06/2003 7 31/07/2003 9 10 31/08/2003 30/09/2003 31/10/2003 11 12 30/11/2003 31/12/2003 13 31/01/2004 14 29/02/2004 31/03/2004 16 17 30/04/2004 31/05/2004 18 30/06/2004 L'obiettivo in

ì

serie associate alle v t-4, in quanto supp aggiustamento che s Osservazione presente che le nu consideriamo le var termini. In conclusi indipendente è il ses Nella figura c delle variazioni dell

1999 1997	Α
	Т
· .	im
: 1	
2.	31/01/2003
3	28/02/2003
4	31/03/2003
	30/04/2003
	31/05/2003
0	20/06/2003
	31/07/2003
8	31/09/2003
9	20/00/2003
10	30/09/2003
11	31/10/2003
12	30/11/2003
13	31/12/2003
14	31/01/2004
15	29/02/2004
16	31/03/2004
17	30/04/2004
18	31/05/2004
19	30/06/2004
20	31/07/2004
24	31/09/2004
lin m	odello statistico
50 m	oucho statistico

Tiziano Bellini e Marco Riani

276

Construction of the second second second

ziarie: nuove operazioni, terminazione iniziale del

società non finanziarie: società non finanziarie

30600, tassi interbancari

che nel periodo gennaio escente. Al contrario, da si decrescono.

3

esse in esame

portato nell'equazione (1) è a variabile dipendente e alle oglio denominato "Modello jura 2).

 A	^B Tasso	¢	D	Ę	F	G	н	
	impieghi (yt)	Euribor 1 mese (Xt)	Δyt	$\Delta \mathbf{x}_{t}$	Δx_{t-1}	Δx_{t-2}	Δx_{t-3}	Δx_{t-4}
31/01/2003	0,0485	0,0285						
28/02/2003	0,0481	0,0278						
31/03/2003	0,0463	0,0261						
30/04/2003	0,0460	0,0257						
31/05/2003	0,0458	0,0251						
30/06/2003	0,0432	0,0216						
31/07/2003	0,0424	0,0212						
31/08/2003	0,0428	0,0212						
30/09/2003	0,0416	0,0212						
31/10/2003	0,0419	0,0209						
30/11/2003	0,0417	0,0208						
31/12/2003	0,0406	0,0215						
31/01/2004	0,0408	0,0207						
29/02/2004	0,0410	0,0206						
31/03/2004	0,0409	0,0204						
30/04/2004	0,0406	0,0205						
31/05/2004	0,0406	0,0206						
30/06/2004	0,0401	0,0208						

L'obiettivo iniziale è quello di costruire nella colonna D la serie Δy_i e nelle colonne E:I le serie associate alle variabili indipendenti. Nel modello proposto consideriamo ritardi fino al tempo t-4, in quanto supponiamo che la "vischiosità" dei tassi di interesse determini un processo di aggiustamento che si completa nell'arco di 4 mesi.

Osservazione: dato che nel nostro modello operiamo in termini di variazioni, occorre tener presente che le nuove serie $\Delta y_t \in \Delta x_t$ presenteranno un termine in meno. Inoltre, dato che consideriamo le variazioni fino al tempo *t*-4 nella variabile indipendente (Δx_{t-4}), si perdono altri 4 termini. In conclusione, il primo periodo per cui disponiamo di tutte 4 le variazioni nella variabile indipendente è il sesto (nel nostro caso giugno 2003).

Nella figura che segue si mostra come si devono impostare le formule per costruire i valori delle variazioni della variabile dipendente e delle variabili indipendenti per il mese di giugno 2003.

Α	В	c	D .	Ε	F	G	Н	· · · · · · · ·
	Tasso impieghi	Euribor 1 mese (Xt)	Δyt	Δx _t	Δx _{t-1}	Δx _{t-2}	Δx_{t-3}	Δx _{t-4}
31/01/2003 28/02/2003 31/03/2003 30/04/2003 31/05/2003	3 0,048 3 0,048 3 0,048 3 0,046 3 0,045	Per calcolare il corrispondenza d '03, inserire nella =C7-C6.	valore di Δx_i in lel mese di giugno cella E7 la formula	Per di gi	calcolare il valo ugno '03, inserii	re di ∆x _{t-1} in (re nella cella F	corrisponden 7 la formula	za del mese =C6-C5.
30/06/2003	0,0432 0,0432	2 0,0216	-0.0026	-0,00	35 -0,0006	-0.0004	-0,0017	-0.0008
31/07/2003	3 0.0424	0,0212	9					<u>`</u>
31/08/2003	3 0,0428	3 0,021/2						
30/09/2003 31/10/2003 30/11/2003 31/12/2003 31/01/2004 29/02/2004 31/03/2004 30/04/2004	3 0,0416 3 0,0415 3 0,0417 3 0,0406 4 0,0406 4 0,0406 4 0,0406 4 0,0406 4 0,0406 4 0,0406 4 0,0406 4 0,0406	6 Per ca 7 in corr 6 di giu 8 nella 0 = B7-B 9	lcolare il valore di ∆y ispondenza del mesi igno 2003, inseriri cella D7 la formul: 6.	/1 9 9 2	Per ricopia sottostante, posizionare freccia e far riempimento	are le form selezionar I mouse nel p e doppio clici	nule nella e la zona punto indicato < sul quadra	zona D7:I7, o dalla tino di
31/05/200	4 0,0400	6 0,0206	5		1			
30/06/200	4 0,040	1 0,0208	3					
31/07/200	4 0,041	0 0,0207	,					
31/08/200	4 0.041	4 0.020F	2					

Figura 2: i dati di partenza

Tiziano Bellini e Marco Riani

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

941. j	A	В	С	D	E				
1		Tasso impieghi (yt)	Euribor 1 mese (Xt)	Δyt	Δx _t	Δx _{t-1}	Δx _{t-2}	Δx _{t-3}	Δx _{t-4}
2 3 4 4 5 6 7 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 22	31/01/2003 28/02/2003 31/03/2003 31/05/2003 31/05/2003 31/07/2003 31/08/2003 30/09/2003 31/10/2004 31/12/2003 31/12/2004 31/03/2004 31/05/2004 31/05/2004 31/05/2004 31/07/2004 31/07/2004	0,0485 0,0463 0,0460 0,0458 0,0432 0,0424 0,0428 0,0416 0,0419 0,0419 0,0406 0,0408 0,0400 0,0409 0,0406 0,0406 0,0401 0,0410 0,0414 0,0402	0,0285 0,0278 0,0257 0,0251 0,0212 0,0212 0,0212 0,0209 0,0208 0,0215 0,0207 0,0206 0,0204 0,0205 0,0206 0,0208 0,0208 0,0207 0,0208 0,0208	-0.0026 -0.0008 0,0004 -0.0012 0,0002 -0.0011 0,0002 -0,0001 -0,0003 -0,0001 -0,0003 -0,0001 -0,0005 0,0009 0,0004 -0,0013	-0.0035 -0.0004 -0.0000 0,0003 -0.0008 -0.0008 -0.0008 -0.0001 0,0001 0,0001 0,0002 -0,0001 0,0002 -0,0001 0,0000	-0,0006 -0,0035 -0,0004 -0,0000 -0,0003 -0,0000 0,0006 -0,0001 -0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001	-0.0004 -0,0035 -0,0004 -0,0000 -0,0003 -0,0000 -0,0008 -0,0000 -0,0008 -0,0001 -0,0002 -0,0001 0,0001 0,0002 -0,0001	-0,0017 -0,0004 -0,0006 -0,0005 -0,0004 -0,0000 -0,0003 -0,0000 -0,0008 -0,0008 -0,0008 -0,0001 -0,0001 0,0001 0,0001 0,0002	-0,0008; -0,0017 -0,0004 -0,0006 -0,00035 -0,0000 -0,0000 -0,0000 -0,00006 -0,00006 -0,00006 -0,0002 -0,0002 0,00001

La funzione REGR.l insieme di dati conosciuti p

dove:

y_nota è la zona che
X-nota è la zona ch
E7:186). Se que sequenza 1, 2, ...
Gli altri due argomei una costante logica come '
e 0). Le impostazioni pred

secondo argomento.

Se l'argomento cost (senza) l'intercetta.

Se l'argomento stat b_k) anche le statistiche di v

Tutte le formule vengono automaticamente copiate fino alla riga 86 (gennaio 2010).

1	A	В	C						
61	31/12/2007	0.0598	a 0 0477	0.0045	E	F	G	H :	1.1
62	31/01/2008	0.0582	G 0421	0,0015	0,0048	0,0004	-0, 00 25	0,0015	0,0024
63	29/02/2008	0 0574	0,0421	-0,0016	-0,0056	0,0048	0,0004	-0,0025	0.0015
64	31/03/2008	0.0581	0,0420	-0,0008	-0.0001	-0.0056	0,0048	0,0004	-0.0025
65	30/04/2008	0.0595	0,0436	0,0007	0,0017	-0,0001	-0.0056	0,0048	0.0004
66	31/05/2008	0,0600	0,0440	0,0014	0,0008	0,0017	-0,0001	-0.0056	0.0048
67	30/06/2008	0,0000	0,0444	0,0006	-0,0002	0,0008	0,0017	-0.0001	-0.0056
68	31/07/2008	0.0615	0,0452	0,0005	0,0008	-0,0002	0,0008	0.0017	-0.0001
69	31/08/2008	0,0013	0,0451	0,0010	-0,0001	0,0008	-0,0002	0.0008	0.0017
70	30/09/2008	0,0010	0,0451	-0,0002	~0, 0 000	-0,0001	0,0008	-0.0002	0,0008
71	31/10/2008	0,0019	0,0474	0,0007	0,0023	-0,0 0 00	-0,0001	0.0008	-0.0002
72	30/11/2008	0,0048	0,0484	0,0028	0,0009	0,0023	-0,0000	-0.0001	0,0008
73	31/12/2008	0,0530	0,0396	-0,0052	-0,0088	0,0009	0,0023	-0.0000	-0.0001
74	31/01/2009	0,0351	0,0312	-0,0065	-0,0083	-0,0088	0,0009	0.0023	-0.0000
75	28/02/2009	0,0439	0,0218	-0.0072	-0,0 09 4	-0,0083	-0,0088	0.0009	0.0023
76	31/03/2009	0,0410	0,0172	-0,0043	-0,0046	-0,0094	-0,0083	-0.0088	0,0009
77	30/04/2009	0,0367	0,0130	-0,0029	-0,0042	-0,0046	-0.0094	-0.0083	-0.0088
78	31/05/2009	0,0367	0,0106	-0,0020	-0,0024	-0,0042	-0.0046	-0 0094	-0,0000
79	30/06/2009	0,0352	0,0090	-0,0015	-0,0016	-0,0024	-0.0042	-0.0046	-0,0003
80	31/07/2009	0,0343	0,0098	-0,0009	0,0008	-0,0016	-0.0024	-0.0042	-0,0004
81	31/08/2009	0,0322	0,0067	-0.0021	-0,0031	0,0008	-0.0016	-0.0024	0,0040
82	30/09/2009	0,0310	0,0053	-0,0012	-0,0014	-0,0031	0.0008	-0.0016	-0,0042
83	31/10/2009	0,0305	0,0052	-0,0005	-0,0001	-0,0014	-0.0031	0.0008	-0.0024
84	30/11/2009	0,0305	0,0052	-0,0000	0,0000	-0,0001	-0.0014	-0.0031	0,0010
85	31/12/2009	0,0299	0,0046	-0,0005	-0,0006	0,0000	-0.0001	-0.0014	0,0000
86	31/01/2010	0,0295	0,0051	-0,0004	0,0005	-0,0006	0.0000	-0.0001	-0,0031
	0 1/0 1/2010	0,0296	0,0045	0,0000	-0,0006	0,0005	-0.0006	0,0000	-0,0014
								0.0000	

Per stimare i parametri di un modello di regressione, in Excel esistono due possibili alternative:

1) la funzione REGR.LIN;

2) il componente aggiuntivo di Excel "Analisi dei dati".

Tiziano Bellini e Marco Riani

Un modello statistico per l'ar

⁽ t-1	Δx _{t-2}	∆x _{t-3}	∆x _{t-4}
2,0006 3,0035 3,0004 3,0000 3,0000 3,0000 3,0000 3,0000 0,0001 0,0002 0,0001 0,0002 0,0001 0,0002 0,0001 0,0002	-0,0004 -0,0006 -0,0035 -0,0004 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 0,0001 -0,0000 0,0001 -0,0000 0,0001	-0,0017 -0,0004 -0,0035 -0,0004 -0,0000 -0,0000 -0,0000 -0,0000 -0,0008 -0,0001 -0,0002 0,0001 -0,0001 -0,0001 0,0001	-0,0008 -0,0017 -0,0004 -0,0006 -0,0003 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000

tiga 86 (gennaio 2010).

		11	1
F	G	0.0015	0.0024
0,0004	-0,0025	0,0015	0,0024
0,0048	0,0004	-0,0025	0,0015
-0,0056	0,0048	0,0004	-0,0025
-0.0001	-0,0056	0,0048	0,0004
0,0017	-0,0001	-0.0056	0,0048
0,0008	0,0017	-0,0001	-0,0056
-0,0002	0,0008	0,0017	-0,0001
0.0008	-0,0002	0,0008	0,0017
-0.0001	0,0008	-0,0002	0,0008
-0.0000	-0,0001	0,0008	-0,0002
0 0023	-0,0000	-0,0001	0,0008
0.0009	0,0023	-0,0000	-0.0001
-0 0088	0,0009	0,0023	-0,0000
-0.0083	-0,0088	0,0009	0,0023
-0 0094	-0,0083	-0,0088	0,0009
-0.0046	-0.0094	-0,0083	-0,0088
-0.0042	-0.0046	-0,0094	-0,0083
-0.0024	-0.0042	-0,0046	-0,0094
-0.0016	-0,0024	-0,0042	-0,0046
0,0008	-0.0016	-0,0024	-0,0042
-0.0031	0.0008	-0,0016	-0,0024
_0 0014	-0.0031	0,0008	-0,0016
0.0001	-0.0014	-0,0031	0,0008
0,0001	-0.0001	-0,0014	-0,0031
0,0000	0 0000	-0.0001	-0,0014
0,0000	-0.0006	0,0000	-0,0001

, in Excel esistono due possibili

Tiziano Bellini e Marco Riani

La funzione REGR.LIN fornisce le stime dei parametri delle variabili esplicative dato un insieme di dati conosciuti per y e X e si presenta nella forma

REGR.LIN(y_nota; x_nota; cost; stat);

dove:

y_nota è la zona che contiene la variabile dipendente (nel nostro caso la zona D7:D86);

X-nota è la zona che contiene la matrice delle variabili esplicative (nel nostro caso la zona E7:186). Se questa zona viene omessa, Excel utilizza come variabile esplicativa la sequenza 1, 2, ..., T.

Gli altri due argomenti **cost** e **stat** sono opzionali: se vengono inclusi devono corrispondere a una costante logica come VERO o FALSO (è possibile sostituire tali costanti rispettivamente con 1 e 0). Le impostazioni predefinite di **cost** e **stat** sono VERO per il primo argomento e FALSO per il secondo argomento.

Se l'argomento **cost** è VERO (FALSO), allora Excel adatta un modello di regressione con (senza) l'intercetta.

Se l'argomento stat è VERO, Excel restituisce oltre ai valori dei parametri stimati $(a, b_0, ..., b_k)$ anche le statistiche di verifica riportate nella tabella che segue.

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

Descrizione

So, S1,..., Sk

Sa

SSreq

国家学校の目的には国家

Statistica

Gli errori standard (standard error) associati alla stima dei coefficienti $b_0, b_1, ..., b_k$ forniscono una misura del grado di precisione associato alla stima dei diversi coefficienti. L'utilizzo degli standard error è necessario per calcolare i test (test t) sulla significatività della relazione tra le singole variabili esplicative e la variabile dipendente. La formula per ottenere il test t associato alla variabile j è la seguente:

tj=bj/sj

Il valore di errore standard associato alla stima della costante a (lo standard error non è disponibile quando cost è FALSO).

La devianza di regressione (
$$DEV(\hat{y})$$
).
 $DEV(\hat{y}) = \sum_{i=1}^{T} (valore previsto_i - mediavalori previsti)^2$

Nel nostro modello *valoreprevisto*_{*i*} = $a + b_0 \Delta x_i + b_1 \Delta x_{i-1} + \dots + b_4 \Delta x_{i-4}$ e *t*=giugno 2003, luglio 2003, ..., gennaio 2010.

Osservazione: nei modelli di regressione con l'intercetta la media dei valori previsti è uguale alla media dei valori effettivi (v. ad es. Zani, 1994).

La somma dei quadrati dei residui (DEV(e)).

$$DEV(e) = \sum_{i=1}^{r} (valore effectivo_{i} - valore previsto_{i})^{2}$$
.

Il coefficiente di determinazione

$$R2 = 1 - \frac{DEV(e)}{DEV(y)} = \frac{DEV(\hat{y})}{DEV(y)}.$$

Questo indice costituisce lo strumento più utilizzato per valutare la validità del modello di regressione e nei modelli con intercetta può avere un valore compreso tra 0 e 1. Se è uguale a 1, significa che esiste una relazione lineare perfetta tra le variabili esplicative e la variabile dipendente. In questo caso non sussiste alcuna differenza tra i valori previsti e i valori effettivi di y. Se invece il coefficiente di determinazione è uguale a 0, l'equazione di regressione non sarà di alcun aiuto nella stima di un valore y.

l gradi di libertà (numero di oservazioni – numero di variabili esplicative). Essi sono utili per calcolare i *p-value* (v. pagine che seguono) delle statistiche di regressione. Nel nostro modello d*f*=80-6=74.

L'errore standard per la stima di y

F = P

$$se_{y} = \frac{DEV(e)}{d_{f}} = \frac{\sum_{i=1}^{l} (valore effectivo_{i} - valore previsto_{i})^{2}}{d_{f}}$$

La statistica F. Si deve utilizzare la statistica F per testare se la relazione osservata tra la variabile dipendente e le variabili indipendenti è casuale.

$$\frac{DEV(\hat{y})}{p-1} = \frac{DEV(e)}{d}$$
, (p è il numero di variabili esplicative del modello includendo a

costante). In assenza di relazione lineare tra le variabili esplicative e la variabile dipendete la statistica F è distribuita come una v.c. F con p-1 e d∈ gradi di libertà. Nel nostro esempio p=6 e d∈74.

La figura 3 mostra l'ordine in cui vengono restituite le statistiche aggiuntive di regressione.

Tiziano Bellini e Marco Riani

Figura 3: ordine

Osservazione: si ne error delle variabili indipe

Dopo questa brev funzionamento in pratica seguito.

Selezionare una cel

Home	Inserisci	Layout di pag
fx Inserisci So tunzione autor	Σ É mma Utilizzat matica • recenti	e di Finanziarie e *
<u>biuininere</u> L	845 You 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Consente di r cella corrente modificando	nodificare la forn scegliendo funz gli argomenti. ori informazion	mula nella tioni e 1. premere F1.
<u>2</u> <u>3</u>		
5		
7	-0,0026	-0.003
9	0,0004	-0.000

A questo punto, "Formule", nella categor

Un modello statistico per l'ana

SSresid

R2

F

df

Sey

, b_1 , ..., b_k forniscono utilizzo degli standard tra le singole variabili o alla variabile j è la

standard error non è

 $+ b_4 \Delta x_{r-4}$ e t=giugno

ori previsti è uguale alla

validità del modello di 0 e 1. Se è uguale a 1, a variabile dipendente. In ffettivi di y. Se invece il sarà di alcun aiuto nella

ative). Essi sono utili per vel nostro modello df=80-

 $(\gamma_i)^2$

relazione osservata tra la

del modello includendo al

oile dipendete la statistica F p=6 e d∈74.

aggiuntive di regressione.

.

Tiziano Bellini e Marco Riani

Figura 3: ordine in cui vengono restituite le statistiche aggiuntive di regressione dalla funzione di Excel REGR.LIN

	А	В	С	D	E	F	G
1	b _k	b _{k-1}		b ₂	b ₁	b ₀	а
2	S _k	S _{k-1}	•••	S ₂	S ₁	S ₀	Sa
3	R2	sey					*
4	F	d _f					
5	SSreg	SS _{resid}					
6		· · · · · · · · · · · · · · · · · · ·					· · ·

Osservazione: si noti che, con o senza le statistiche di verifica, i coefficienti e gli standard error delle variabili indipendenti sono restituiti in ordine inverso rispetto ai dati di input.

Dopo questa breve digressione teorica sulla funzione REGR.LIN, vediamo il suo funzionamento in pratica. Per ottenere le stime dei coefficienti occorre procedere come indicato di seguito.

Selezionare una cella vuota nel foglio di lavoro (ad esempio, la cella K6).

ίζe	Л	ome	Insensci	Layout di pag	gina	Formute	Dati	Revisione	Visualizza	Sviluppo	Compo	onenti aggiuntivi	Acro	ibat	· · · · · · · · · · · · · · · · · · ·
f: Inser funzi	isci	Somma sutomatica	Utilizzate - recente	di Finanziarie	Logich Librer	A Testo na di funzi	Data e ora • oni	Ricerca e riferimento •	6 Matematiche e trigonometriche	Ahre - funzioni -	Gestione nomi	-O Definisci nom R ²¹ Usa neka torn B Créa da selez Nomi definiti	e • nuis ione	5 ³ 2 Individua preced ≪s Individua dipend ,	lenti 📓 Mostra form lenti 🍲 Controllo en 🛞 Valuta formu Verifica formule
Inse Co cel ma	risci fu nsente la corri odificar	di modifi ente sceg ido gli an	MAIUSC+F care la forn liendo funzi gomenti.	3) nula nella ioni e		F.		G ∧v	H Av	1		J	:	K	
1 2 3	Per ul	teriori in	formazioni	, premere F1.		Δ Λ t-1		⊔∧ t-2	Δx _{t-3}	Δ Λ t-4	ŀ				
4 5 6 7		-(-0,003	35	-0.00	06	-0,0004	-0,0017	-0,00	008			utput della re	gressione (of
8 9)- (0.0008 0 ,0004	-0,000 -0,000	04 00	-0,00 -0,00	35 04	-0,0006 -0.0035	-0,0004 -0.0006	-0,00 -0,00)17)04				

A questo punto, dopo aver fatto click sul pulsante "Inserisci Funzione" nella scheda "Formule", nella categoria "Statistiche" selezionare la funzione REGR.LIN.

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

and a second s

(a) A set of the second sec

e <u>r</u> ca una funzione:	
Digitare una breve descrizione su Vai	di cosa si desidera fare, quindi fare dic
Oppure selezionare una <u>c</u> ategor	ria: Statistiche
elezionare una <u>f</u> unzione:	
PREVISIONE	
PROBABILITÀ	
QUARTILE	
RANGO	
REGRIEIN	
REGR.LOG	
RQ	۲
REGR.LIN(y_nota;x_nota;co	st;stat)
Restituisce statistiche che desc conosciuti utilizzando il metodo	rivono una tendenza lineare corrispondente a punti di dati o dei minimi quadrati.
uida relativa a quosta funzione	
autua relativa a questa fulizione	OK Annulia

Dopo aver inserito le zone che contengono la variabile dipendente (y_nota), le variabili indipendenti (X_nota) e aver digitato la parola VERO, oppure il numero 1, nelle caselle di testo "Cost" e "Stat", fare click su "OK".

Argomenti funzione		8 8
REGR.LIN		
Y_nota	D7:D86	Exi = {-0,002554\-0,00082200000000003\0,00
X_nota	E7:I86	= {-0,003536;-0,00056399999999999999;-0,000:
Cost	1	E VERO
Stat	1	E VERO
Restituisce statistiche che descrivono quadrati.	una tendenza lineare corrispondent	= {0,0259569879897607;-0,041780819260255 te a punti di dạti conosciuti utilizzando il metodo dei minimi
	Stat è un valore logico: restitu restituisce coefficienti m	uisce statistiche aggiuntive per la regressione = VERO; e la costante b = FALSO oppure omesso.
Risultato formula = 0,0260		
<u>Guida relativa a questa funzione</u>		OK Annulla

Dopo aver fatto click su "OK" nella schermata precedente, il numero 0.0260 dovrebbe apparire nella cella K6.

Il coefficiente -0,00coefficiente 0.0001 riportat I valori riportati nella zo: associato alla variabile Δx_t corrispondono rispettivar

Un modello statistico per l'analis

standard error.

=REGR.LII

Δx

-0

-0

x not

Δx

-0 -C

zon: corr

f÷

-0,0035

-0,0004

REGRUM

 Δx_{t-1}

-0,000

-0,0035 -0,0004 -0,004

0,00 Dop

Output della

Ricordando lo schema rip K6 rappresenta la stima del co Essendo la funzione REGR.LII completo della regressione, occ

Δx

-0,0035 -0,0004 -0,0000 0,0000 -0,0003 -0.0000

Osservazione: la zona nel nostro modello sono 6 (la

Δx_t

K6

2

8

∆yt

∆yt

-0,0026 -0.0008 0,0004

-0,0012 0,0003

-0.0002

Output.

4

6 7

-0,0026

-0,0008

Tiziano Bellini e Marco Riani

pendente (y_nota), le variabili numero 1, nelle caselle di testo

8 3
1,002554\-0,0008220000000003\0,00
),003536;-0,000563999999999999;-0,0002
RO
RO
,0259569879897607;-0,041780819260255 prosciuti utilizzando il metodo dei minimi
jgiuntive per la regressione = VERO; FALSO oppure omesso.
OK Annulla
nte, il numero 0.0260 dovrebbe

K6 =REGR.LIN(D7:D86;E7:186;VERO;VERO) f÷, н ∆yt Δx_t Δx_{t-3} $\Delta X_{t,\gamma}$ ∆x_{t-4} Δx_{t-2} 1 2 3 4 5 6 7 8 Output della regressio 0,0260 -0,0026 -0.0006 -0.0008 -0.0035 -0.0004 -0.0017-0,0008 -0,0004 -0,0035 -0,0006 -0,0004 -0,0017

Ricordando lo schema riportato nella figura 3, è facile intuire che il valore riportato nella cella K6 rappresenta la stima del coefficiente dell'ultima variabile esplicativa (nel nostro caso Δxt -4). Essendo la funzione REGR.LIN una funzione "matrice" (v. Riani, 2002), per far apparire l'output completo della regressione, occorre procedere come indicato di seguito.

R	GRUN T	X √ £ =R	EGR.LIN(D7:08	36;E7:186;VERC	;VERO)		
24	D	E (REGRUIN(y_n	; [x_notaj; [cost	; (stat))		J English K Statistical Line (Minister N Statistical October 2019) Parts
	Δyt	Δx _t	Δx _{t-1}	Δx _{t-2}	Δx _{t-3}	∆x _{t-4}	
1 2 3 4							
5				1			Output della regressione (ottenuto dalla funzione REGR LIN)
6	0.0002	0.0005	0.0002	10.0004	0.0047	0.0000	=REGR.LIN(D7:
8 9	-0.0008	-0,0004	-0,0006	-0.0004 -0.0006 -0.0035	-0,0004 -0,0004 -0,0008	-0,0017	
10 11 12	-0.0012 0.0003 -0.0002	0,0000 -0,0003 -0.0000	-0.00 0,00 -0.00 Z	Dopo ave cona K6:F combinazi	r selezio 210), fare one di ta	nato la z e click su sti CTRL	ona di risposta (in questo caso la a barra della formula e digitare la SHIFT+INVIO.

Osservazione: la zona di risposta contiene 6 colonne (K:P) in quanto le variabili esplicative nel nostro modello sono 6 (la costante, e le 5 variazioni Δx_j , j=0, 1, ..., 4).

Ju	tput.	

11

N N	L	N	
Output della regressione (of	tenuto dalla funzione REG	R.LIN)	
0,0260	-0,0418 0,0439 0	,2384 0,5021	-0,000004
0,0334	0,0363 0,0358 0	,0364 0,0335	0,0001
0,8810	0,0006 #N/D #	#N/D #N/D	#N/D
109,6097	74,0000 #N/D #	#N/D #N/D	#N/D
0,0002	0,0000 #N/D #	#N/D #N/D	#N/D

Il coefficiente –0,000004 riportato nella cella P6 rappresenta la stima dell'intercetta. Il coefficiente 0.0001 riportato nella cella P7 rappresenta la stima dello *standard error* dell'intercetta. l valori riportati nella zona O6:O7 corrispondono, rispettivamente, alla stima del coefficiente associato alla variabile Δx_t ed al suo *standard error*. Similmente, i valori riportati nella zona K6:K7 corrispondono rispettivamente alla stima del coefficiente associato alla variabile Δx_{t-4} ed al suo *standard error*.

Tiziano Bellini e Marco Riani

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

Ricordando il prospetto dell'output della funzione REGR.LIN (figura 3), emerge, ad esempio, che il dato inserito nella cella K8 (0.8810) si riferisce al coefficiente di determinazione. In questo esempio, esso segnala che il modello proposto spiega all'incirca l'88% della varianza della variabile dipendente.

Il *p*-value del test F (riportato nella cella K9) che in Excel si può calcolare utilizzando la funzione DISTRIB.F risulta di gran lunga inferiore a 0.0001. Di conseguenza possiamo affermare che esiste una relazione significativa tra le variabili esplicative considerate e la variabile dipendente.

Una volta adattato un modello di regressione, occorre testare se le variabili indipendenti forniscono un contributo significativo alla spiegazione della varianza della variabile dipendente. Per effettuare tale test andremo a costruire le cosiddette statistiche t_i definite come segue:

 $t_i = b_i/(\text{standard error di } b_i)$. j = 0, ..., k.

Nel nostro caso, per calcolare le statistiche t_j dei parametri occorrerà semplicemente dividere i dati contenuti nella zona K6:P6 per quelli contenuti nella zona K7:P7. Per fare ciò, dopo aver inserito nella cella K14 la formula K6/K7, trascinare come indicato nella figura che segue per copiare le formule a destra.

Inserisci fun 0 M , N Ce<u>r</u>ca una fi Digitare ι su Vai Oppure s 1 2 Selezionare 3 DISTRIB 4 Output della regressione (ottenuto dalla funzione REGR.LIN) DISTRIB 5 DISTIN 0,5021 -0.000004 0,0260 -0.0418 0,0439 0,2384 6 ERR.STI 0.0335 0.0001 0.0334 0,0363 0,0358 0,0364 7 FISHER 0,8810 0,0006 #N/D #N/D #N/D #N/D 8 FRFOUE 109,6097 74,0000 #N/D #N/D #N/D #N/D 9 GRAND #N/D 0.0000 #N/D #N/D 10 0.0002 #N/D DISTRU 11 Restituis 12 Calcolo delle statistiche t 13 0,7764 14 15 16 <u>Guida rel</u> Output del trascinamento. A questo punto.

Output della regressione (ottenuto 0,0260 0,0334 0,8810 109,6097 0,0002	dalla funzione REGR. LN) -0.0418 0,0439 0,2384 0,0363 0,0358 0,0364 0,0006 #N/D #N/D 74,0000 #N/D #N/D 0,0000 #N/D #N/D	0,5021 0,0335 #N/D #N/D #N/D	-0,000004 0,0001 #N/D #N/D #N/D	specificare la cella ch nostro caso K14), la c seconda che l'ipotesi $H_1: \beta_j \neq 0$).
Calcolo delle statistiche t 0,7764	-1,1497 1,2269 6,5554	15,0107	-0,0672.	

Tiziano Bellini e Marco Riani

(3)

Si può dimostrare (v distribuita come una var indicheremo con d_j) pari z Asintoticamente t_j è distril che nell'universo il valore essere rifiutata se $|t_j| > t_{\alpha}$ du di libertà.

Excel consente di ca assuma valori in modulo s *p-value* portano a rifiutare maggiore del valore camp Per calcolare i *p-vc* seguito.

Dopo essersi posiz categoria "Statistiche", se

284

1993年に現在には、1993年には国際部門部門部門部門部門部門部門部門部門部門部門によれた。19

NO. CONTRACTOR DESCRIPTION

a 3), emerge, ad esempio, leterminazione. In questo la varianza della variabile

ò calcolare utilizzando la ienza possiamo affermare insiderate e la variabile

le variabili indipendenti a variabile dipendente. Per ome segue:

(3)

à semplicemente dividere i 7. Per fare ciò, dopo aver 1ella figura che segue per

Si può dimostrare (v. Riani e Laurini, 2008) che sotto l'ipotesi nulla H ₀ : $\beta_j=0$, la quantità t_j è
distribuita come una variabile aleatoria T di Student con un numero di gradi di libertà (che
indicheremo con d_f) pari al numero delle osservazioni meno il numero delle variabili esplicative.
Asintoticamente t_j è distribuita come una variabile casuale normale standardizzata. L'ipotesi nulla
che nell'universo il valore del coefficiente associato alla j-esima variabile esplicativa sia zero, può
essere rifiutata se $ t_j > t_{\alpha}$ dove t_{α} è il valore critico della variabile aleatoria T di Student con d_f gradi
di libertà.

Excel consente di calcolare il cosiddetto *p-value*, ossia la probabilità che la statistica in esame assuma valori in modulo superiori a quello osservato quando è vera l'ipotesi nulla. Piccoli valori del *p-value* portano a rifiutare H_0 , in quanto se l'ipotesi nulla è vera, la probabilità che la statistica t_j sia maggiore del valore campionario osservato è molto bassa.

Per calcolare i p-value delle statistiche t che abbiamo ottenuto, procedere come indicato di seguito.

Dopo essersi posizionati nella cella K15, dal menu "Inserisci", scegliere "Funzione". Nella categoria "Statistiche", selezionare la funzione "DISTRIB.T".

			Inserisci funzione
	0	P	Ce <u>r</u> ca una funzione:
			Digitare una breve descrizione di cosa si desidera fare, quindi fare clic su Vai
			Oppure selezionare una <u>c</u> ategoria: Statistiche
		14 an 16 a	Selezionare una <u>f</u> unzione:
			DISTRIB.NORM
N)	0 5021 -0	.000004	DISTRIB.NORM.ST
L	0,0335	0,0001	ERR.STD.YX
	#N/D	#N/D	FREQUENZA
	#N/D	#N/D	DISTRIB.T(x:grad libertà:code)
		1. June 1.	Restituisce la distribuzione t di Student.
		-	
		T	
		, <u>- 100</u> , - 10	Guida relativa a guesta funzione OK Annulla
			م بر در 198 3 برد برد برد برد برد برد برد برد برد برد
			A questo nunto, nella schermata "Argomenti funzione" (y. schermata che segue) occorre
			specificare la cella che contiene il valore della statistica t per cui si deve calcolare il <i>p-value</i> (nel
	0,5021	-0.000004	nostro caso K14), la cella che contiene i gradi di libertà (nel nostro caso L9) e il numero 1 o 2 a
	0,0335	0,0001	seconda che l'ipotesi alternativa (H1) sia unilaterale o bilaterale (nel nostro caso è bilaterale, ossia
	#N/D	#N/D	$H_1: \beta_j \neq 0$).
	#N/D #N/D	#N/D	
	15,0107	-0,0672	· · · · · · · · · · · · · · · · · · ·

Tiziano Bellini e Marco Riani Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

Argomenti funzi DISTRIB.T	one						Per calcolare i valori (indicato di seguito.
x	К14		= 0,7763	94838			Output.
Grad_libertà	L9		= 74				J K
Code	2		= 2				Output dell
			= 0,4399	90461			
Restituisce la dist	ribuzione t di Student.						1 2 8
Risultato formula Guida relativa a d	Con = 0,4400 <u>questa funzione</u>	de specifica il nume distribuzione a u	ro di code na coda =	di distribuzi 1; distribuz	one da restitui ione a due coc	ire: te = 2. Annulla	8 10 11 12 13 13 13 15 14 15 14
Output.			7007.462.154.1.52.252				Per quanto riguarda assenza di relazione linear considerazione dell'interce due mesi non contribuisco
K15 👻	🗲 🔚 =DISTRIB.T(ASS(K	14);\$L9;2)				·	A questo punto i r
<u></u>	K	L	M	<u>N</u>	0	P	A questo punto, i p
5	Output della regression	ne (ottenuto dalla fu	nzione Rf	GR LIN)			togilendo le valiabili espli
6.	0.0260	-0.04	18 0.0439	0.2384	0.5021	-0.000004	4) e di analizzare i lesidui
7	0,0334	0.03	63 0.0358	0.0364	0.0335	0,0001	2000). Nel seguito di que
8	0,8810	0,00	06 #N/D	#N/D	#N/D	#N/D	concentriamo sulla proced
9	109,6097	74,00	00 #N/D	#N/D	#N/D	#N/D	basa sul componente aggit
10	0,0002	0,00	00 #N/D	#N/D	#N/D	#N/D	
11							
12							
13	Calcolo delle statistich	et					

-1,1497 1,2269 6,5554

Il valore 0.4400 indica che c'è una probabilità pari a 0.44 che si verifichi il risultato campionario osservato quando nell'universo il coefficiente di Δx_{t-4} è pari a zero. In questo caso, dato che c'è una probabilità non modesta di ottenere nel campione un coefficiente pari a 0.7764 per la variabile Δx_{t-4} , quando nell'universo $\beta_4=0$, non possiamo respingere l'ipotesi nulla di assenza di relazione lineare tra e y e Δx_{t-4} .

0,7764

0,4400

Tiziano Bellini e Marco Riani

15,0107

-0,0672

Un modello statistico per l'ana

286

14 15 16

And the second second

Per calcolare i valori delle statistiche t per le rimanenti variabili esplicative, trascinare come indicato di seguito.

Output.

15

J	K	L .	М	N	0	P
	Output della regressione (o	ottenuto dalla funzi	one RE	GR.LIN)		
	0,0260	-0,0418	0,0439	0,2384	0,5021	-0,000004
	0,0334	0,0363	0,0358	0,0364	0,0335	0,0001
	0,8810	0,0006	#N/P	#N/D	#N/D	#N/D
	109,6097	74,0000	#N/D	#N/D	#N/D	#N/D
	0,0002	0,0000	#N/D	#N/D	#N/D	#N/D
	Calcolo delle statistiche t					
	0,7764	-1,1497	1,2269	6,5554	15,0107	-0,0672
	0,4400	0,2540	0,2238	0,0000	0,0000	0,9466

Per quanto riguarda le statistiche *t* degli altri coefficienti si evidenzia che l'ipotesi nulla di assenza di relazione lineare si può rifiutare solo per quelli associati a Δx_t , Δx_{t-1} . In altre parole, la considerazione dell'intercetta e degli scostamenti del tasso euribor aventi lag temporali maggiori di due mesi non contribuiscono significativamente a spiegare il fenomeno in esame.

A questo punto, i passi successivi da compiere sarebbero quelli di riadattare il modello togliendo le variabili esplicative che non sono risultate significative (nel nostro caso Δx_{t-2} , Δx_{t-3} , Δx_{t-4}) e di analizzare i residui per valutare l'eventuale presenza di valori anomali (Atkinson e Riani, 2000). Nel seguito di questa sezione tralasciamo gli aspetti relativi alla selezione del modello e ci concentriamo sulla procedura alternativa per ottenere le stime delle statistiche di regressione che si basa sul componente aggiuntivo "Strumenti di analisi".

che si verifichi il risultato pari a zero. In questo caso, coefficiente pari a 0.7764 per e l'ipotesi nulla di assenza di

ibuzione da restituire: ibuzione a due code = 2.

OK

.IN)

14

<u></u>;4

54

Annulla

-0.000004

#N/D

#N/D

#N/D

0,0001

-0,0672

0,5021

0,0335

15,0107

#N/D

#N/D

#N/D

Tiziano Bellini e Marco Riani Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

287

and the second second

lional la science market

Per attivare (installare) tale componente aggiuntivo, dopo aver fatto click sul pulsante di Office, , nella sezione "Componenti Aggiuntivi" fare click sul pulsante "Vai".

Nella schermata che a

	inter a desta de la compo	nenti aggiuntivi di Microsoft Office	2.	
Formule				
Strumenti di correzione	Componenti aggiuntivi			
Salvataggio	Nome Componenti appluntivi di applicationi attivi	Percorso	Тіро	
Impostazioni avanzate	Acrobat PDFMaker Office COM Addin	C:\aker\Office\PDFMOfficeAddin.dll	Componente aggiuntivo COM	
Personalizzazione	Componente aggiuntivo Boxplot Componente aggiuntivo Risolutore	C:\ing\Microsoft\AddIns\Boxplot.xla C:\12\Library\SOLVER\SOLVER.XLAM	Componente aggiuntivo di Excel Componente aggiuntivo di Excel	
Componenti aggiuntivi	Google Desktop Office Addin	C:\ Search\GoogleDesktopOffice.dll	Componente aggiuntivo COM	
Centro protezione	Snaglt Add-in	C:\ith\Snaglt 8\SnagltOfficeAddin.dll	Componente aggiuntivo COM	
Risorse	S-PLUS Add-In Spreadsheet Link EX 3.0.2 for use with MATLAB	C:\fice\Office12\Library\SPLUS97.XLA C:\R2008b\toolbox\exlink\excllink.xla	Componente aggiuntivo di Excel	
	Strumenti di analisi XV Chart Labeler 7.0	C:\12\Library\Analysis\ANALYS32.XLL	Componente aggiuntivo di Excel	
		crimitabeler (Archartabbeer Ma	componente aggiornito di Ekcel	
	Componenti aggiuntivi di applicazioni inattivi Contenuto invisibile	C:\osoft Office\Office12\OFFRHD.DLL	Controlio documento	
	Creazione guidata Somma condizionale Data (Elenchi smart tag)	C:\fice\Office12\Library\SUMIF.XLAM	Componente aggiuntivo di Excel	
	Dati XML personalizzati	C:\osoft Office\Office12\OFFRHD.DLL	Controllo documento	
	Fogli di lavoro nascosti Internet Assistant VBA	C:\osoft Office\Office12\OFFRHD.DLL C:\ffice\Office12\Library\HTML.XLAM	Controllo documento Componente aggiuntivo di Excel	
	Intestazioni e piè di pagina Nome persona (Destinatari posta elettronica di Outlo	C:\osoft Office\Office12\OFFRHD.DLL	Controlio documento Smart tan	
	Ricerca guidata	C:\e\Office12\Library\LOOKUP.XLAM	Componente aggiuntivo di Excel	
	Righe e colonne hascoste	C:\OSOR Office\Office12\OFFRHD.DLL	Controllo documento	Dopo aver ins
	Editore: Adobe Systems, Incorpor	ated		menu "Dati".
	Percorso: C:\Program Files\Adobe\	Acrobat 8.0\PDFMaker\Office\PDFMOfficeAd	din.dll	A second s
	Descrizione: Acrobat PDFMaker Office	COM Addin		Dati Revisione Visualizza
		te desente contra que se até décembra acadama e come e ancar e checka a que es	al for a set field of any . They are splittly desired as a set of the set of	24 21Å
	Gestisci: Componenti aggiuntivi di Excel 💌	<u>vai</u>		Modilica collagamenti Al-
-			OK Annulta	ordinession
TRACTAL AND ADDITION OF SHEET ST		North States and States		L
				2

er fatto click sul pulsante di	Nella schermata che appare fare click sulla voce "Strumenti di analisi".
Isante "Vai".	Componenti aggiuntivi
Isante "Vai". soft Office. PAddin.dll Componente aggiuntivo COM Doxplot.xla Componente aggiuntivo di Excel pOffice.dll Componente aggiuntivo cOM iv.ysyn.kla Componente aggiuntivo di Excel pOffice.dll Componente aggiuntivo cOM iv.ysyn.kla Componente aggiuntivo di Excel pOffice.dll Componente aggiuntivo di Excel Acxclink.kla Componente aggiuntivo di Excel Aver.din.kla Componente aggiuntivo di Excel MAYS32.XLL Componente aggiuntivo di Excel MAYS32.XLL Componente aggiuntivo di Excel SUMIF.XLAM Componente aggiuntivo di Excel MOFEHDDLL Controllo documento SUMIF.XLAM Componente aggiuntivo di Excel MOFEHDDLL Controllo documento SUMIF.XLAM Componente aggiuntivo di Excel VOFFRHDDLL Controllo documento SUMIF.XLAM Componente aggiuntivo di Excel VOFFRHDDLL Controllo documento VITML.XLAM Componente aggiuntivo di Excel VOFFRHDDLL Controllo documento VITML.XLAM Componente aggiuntivo di Excel	Componenti aggiuntivi OK Componente aggiuntivo Boolot OK Creazine guidata Somma Culzionale Annula Internet Assistant VBA Sfoglia Strumenti di analisi Sfoglia Strumenti di analisi Strumenti di conversione euro YY Chat Labeler 7.0 Strumenti di analisi Strumenti di conversione euro Strumenti di conversione euro Strumenti di conversione euro Strumenti di conversione euro Strumenti di analisi Strumenti di analisi
	<u>i i M N Q P Q R S T U</u>
Tiziano Bellini e Marco Riam	^{Un} modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari 28

Osservazione: il componente aggiuntivo Risolutore può dare problemi se il separatore decimale è la virgola. Suggeriamo, pertanto, nelle opzioni di Excel di impostare come separatore decimale il punto (v. schermata che segue).

Nella finestra "Regres inserire la zona che contic assicurati che la casella di modello consideriamo ancl fintervallo di output" (ad es

R muttiplo

Tiziano Bellini e Marco Riani

R al quadrato R ai quadrato c

> lesiduo olale

ntercetta /ariabile X 1 /ariabile X 2 Variabile X 3 Variabile X 4 Variabile X 5

Un modello statistico per l'a

Errore standard Osservazioni ANALISI VARIANZA Regressione

ioni di Excel			"Intervallo di output" (ad e
mpostazioni generali	Opzioni avanzate per l'utilizzo di Excel		Repressione
ormule			
Strumenti di correzione	Opzioni di modifica		Input
Salvataggio	Dopo la pressione di INVIO. sposta la selezione		Intervallo
mpostazioni avanzate	Direzione: Giù		Intervallo
Personalizzazione	L. j Inserisci automaticamente virgola gecimale		Ftiche
Componenti aggiuntivi	Attiva avadration di riempimento e trascinamento celle		
Centre protezione	 Auto quogramo di sovrascrivere le celle 		🚺 🛄 Livello
Centro protezione	Consenti modifica diretta nelle celle		Ontioni di
Risorse	2 Estendi formati e formule degli intervalli dati		
	2 Attiva voce percentuale automatica		🕘 Inter
	🐼 Abilita completamento automatico dei valori della cella		Nuov
	Ingrandisci con IntelliMouse		
	🔀 Avvisa quando viene eseguita un'operazione che può richiedere molto tempo		
	Quando è interessato il numero di celle seguente (in migliaia): 33554		Residui
	Lilizza separatori di sistema		<u>R</u> es
	Separatore decimale:		👔 💭 Res
	Senaratore delle miniliaia		Tra
		e	📋 🛄 Tra
	Taglio, copia e incollamento		
	Mostra pulsanti per la funzione Incolla		Probab
	Wostra pulsanti per la funzione Inserisci		
	I Taglia, copia e ordina gli oggetti inseriti con le relative celle padre		
	Stampa		and a second part of the
	Modalità ad alta qualità per la grafica		
	Visualizzazione		L'output che app
	ОК	Annulla	J K
And and any specific designment of the second s		ky	
			AU OUTPUT RIEPILC

Una volta selezionata la voce "Analisi dei dati", dal menu "Dati", nella finestra che appare selezionare la voce "Regressione".

<u>S</u> trumenti di analisi	ОК
Analisi di Fourier	Annulia
Istogramma	
Media mobile	
Generazione di un numero casuale	2
Rango e percentile	
Regressione	
Campionamento	=
Test t: due campioni accoppiati per medie	
Test t: due campioni assumendo uguale varianza	_
Test t: due campioni assumendo varianze diverse	T

290

「いいい」というでいいというという。

MEG Gallop-

NEWSCOLOUP AND SALARAS

dare problemi se il separatore el di impostare come separatore

Annulla 👾

OK.

6

OK

Annulla

?

Nella finestra "Regressione", similmente a quanto fatto con la funzione REGR.LIN, occorre inserire la zona che contiene la variabile dipendente e le variabili indipendenti. Dopo essersi assicurati che la casella di controllo "Passa per l'origine" sia deselezionata, in quanto nel nostro modello consideriamo anche l'intercetta, occorre inserire il riferimento a una cella nella casella "Intervallo di output" (ad esempio, la cella K21).

Input		
Intervallo di input <u>Y</u> :	5D\$7:\$D\$86	
Intervallo di input \underline{X} :	\$E\$7:\$I\$86	
Etichette	门 <u>P</u> assa per l'origine	2
Livello di confidenza	95 %	
Opzioni di output		
Intervallo di <u>o</u> utput:	\$K\$21	
🕐 Nuovo <u>f</u> oglio di lavoro:		
🔘 Nuova cartella di lavoro		
Residui		
Residui standardizzati		
🗍 Tra <u>c</u> ciati dei residui		
Tracciati delle appro <u>s</u> sim	azioni	
Probabilità normale		
Tracciati delle probabilità	à normali	

L'output che appare è riportato nell'immagine che segue.

L'output appare in forma ordinata. Il calcolo delle statistiche t ed F avviene in automatico senza bisogno di operazioni aggiuntive. In aggiunta, nella colonna intestata "Valore di significatività", viene riportato immediatamente anche il livello di significatività delle statistiche (pvalue). Naturalmente, i numeri relativi alle statistiche t, contenuti nella zona O37:O42 coincidono esattamente con quelli che avevamo trovato in precedenza utilizzando la funzione REGR.LIN (v zona P14:K14).

Volendo effettuare un riepilogo dei risultati del modello, possiamo affermare che esso permette di spiegare l'88% circa della varianza della variabile dipendente (R2=0.8810). Il *p*-value del test F (cella P32) è inferiore a 0.0001, di conseguenza possiamo affermare che esiste una relazione significativa tra le variabili esplicative considerate e la variabile dipendente. Le variabili indipendenti che risultano significative sono le sole $\Delta x_t \Delta x_{t-1}$. Il modello segnala, quindi, che i ritardi nelle variazioni nell'euribor fino al tempo *t*-2 contribuiscono a spiegare in maniera significativa le variazioni nel tasso sugli impieghi delle banche esaminato.

11.5 Stima dei parametri di un modello di regressione non lineare

Nella sezione precedente abbiamo visto i passaggi da effettuare per stimare i parametri di un modello di regressione lineare. L'obiettivo di questa sezione è quello di spiegare come si possono stimare i parametri nei modelli non lineari.

Per garantire una maggiore flessibilità al modello (1) si può introdurre un nuovo parametro (che chiameremo _) che rappresenta la misura globale in cui, nell'arco periodale intercorrente tra il tempo corrente e lo sfasamento k-esimo, le variazioni nelle variabili indipendenti vengono recepite dalle variazioni nel tasso di interesse applicato dalla banca (variabile dipendente). Il nuovo modello assume, quindi, la seguente forma:

$$\Delta y_{t} = \theta(\beta_{0}\Delta x_{t} + \beta_{1}\Delta x_{t-1} + \dots + \beta_{k}\Delta x_{t-k}) + \varepsilon_{t}, \qquad \varepsilon_{t} \sim i.i.d.(0, \sigma_{\varepsilon}^{2})$$

Il nuovo parametro _ implica che, per raggiungere l'identificabilità del modello, la necessità di imporre opportuni vincoli sui parametri. Ad esempio, se supponiamo che l'effetto delle variazioni dell'euribor nell'intervallo (t - t-k) siano recepite interamente al tempo t dalla variabile

dipendente, risulta naturale imporre il vincolo $\sum_{j=0}^{k} \beta_j = 1$. Infine, dato che i valori di β_j (per j

diverso da 0) indicano l'entità della vischiosità dei tassi di interesse bancari, è naturale imporre il vincolo di non negatività. Combinando tali vincoli si ha che $0 \le \beta_j \le 1$.

Osservazione 1: Altre grandezze che influenzano le variazioni nei tassi di interesse bancan possono essere introdotte come variabili *dummy*.

Osservazione 2: naturalmente, anche nell'equazione (4) può essere introdotta la costante.

Nel caso della regressione lineare svolgendo la condizione di minimo riportata nell'equazione (2) si possono ricavare, in maniera analitica, le espressioni per i parametri incogniti $a, b_0, b_1, ..., b_4$ Nel caso della regressione non lineare il nostro obiettivo è ancora quello di cercare la combinazione dei parametri che minimizza la somma dei quadrati degli scostamenti tra valori effettivi e valori teorici. Più precisamente, con riferimento al nostro esempio, il nostro obiettivo è quello di trovare la combinazione dei valori che minimizza l'espressione che segue:

$$\sum_{t=0}^{T} \left[\Delta y_{t} - \theta (b_{0} \Delta x_{t} + b_{1} \Delta x_{t-1} + \dots + b_{4} \Delta x_{t-4}) \right]^{2}$$

subordinatamente ai vin-

a differenza della precedente parametri. L'equazione di m bisogna provare diverse comt (5). Il componente aggiuntivo di parametri che massimizzar uno o più vincoli. Il risolutore

- Prima di utilizzare il riso
- specificare i valori in
 calcolare i valori teo
- calcolare gli scostari
- 4) calcolare in una det
 - somma dei quadrati

Nel nostro esempio sen provengono dal modello line pari a zero e avendo imposto

		* ****
Т	<u>.</u>	
5		
3		
7. ·	Modello	lineare
8 4	β_4	β ₃
and the		
9	0.0	026
10	0.0)33
11	0.	883
12	113.	049
13	0.	000
14		
15	β	
16	0	.502
17	(.238
18	(0.044
19	-	0.042
20		0.026
21		

Tiziano Bellini e Marco Riani

(5)

(4)

Un modello statistico per l'analisi

te t ed F avviene in autómatico colonna intestata "Valore di ignificatività delle statistiche (pnella zona O37:O42 coincidono undo la funzione REGR.LIN (v.

possiamo affermare che esso endente (R2=0.8810). Il *p*-value siamo affermare che esiste una ariabile dipendente. Le variabili modello segnala, quindi, che i uiscono a spiegare in maniera ninato.

ssione non lineare

are per stimare i parametri di un ello di spiegare come si possono

 b introdurre un nuovo parametro arco periodale intercorrente tra il ili indipendenti vengono recepite ile dipendente). Il nuovo modello

 σ_{ε}^2) (4)

icabilità del modello, la necessità supponiamo che l'effetto delle amente al tempo t dalla variabile

, dato che i valori di β_j (per j

sse bancari, è naturale imporre il $_{j} \leq 1$.

cioni nei tassi di interesse bancari

essere introdotta la costante.

li minimo riportata nell'equazione arametri incogniti $a, b_0, b_1, ..., b_4$. quello di cercare la combinazione amenti tra valori effettivi e valori stro obiettivo è quello di trovare la

(5)

subordinatamente ai vincoli $\sum_{j=0}^{4} b_j = 1 e \ 0 \le b_j \le 1$. Nel caso in cui il modello sia non lineare,

a differenza della precedente situazione, non è possibile trovare un'espressione analitica per i parametri. L'equazione di minimo può essere risolta solo in termini numerici. In altri termini, bisogna provare diverse combinazioni dei parametri per trovare quella che minimizza l'equazione (5). Il componente aggiuntivo di Excel denominato "Risolutore" consente di ricercare combinazioni di parametri che massimizzano (minimizzano) una determinata cella obiettivo subordinatamente a uno o più vincoli. Il risolutore, quindi, consente di risolvere equazioni lineari e non lineari.

Prima di utilizzare il risolutore occorre effettuare i seguenti passi preliminari:

- 1) specificare i valori iniziali dei parametri;
- 2) calcolare i valori teorici del modello utilizzando i valori iniziali dei parametri;
- 3) calcolare gli scostamenti al quadrato tra i valori effettivi e i valori teorici;
- calcolare in una determinata cella il valore della funzione obiettivo (nel nostro caso la somma dei quadrati degli scostamenti tra i valori effettivi e i valori teorici).

Nel nostro esempio sembra ragionevole utilizzare come valori iniziali dei parametri quelli che provengono dal modello lineare senza intercetta avendo posto, a posteriori, i coefficienti negativi pari a zero e avendo imposto il vincolo di somma 1 per i parametri beta (v. immagine che segue).

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

293

Tiziano Bellini e Marco Riar

Dopo aver copiato "i valori" (ossia solo i numeri e non le formule) della zona W16:W21 nella zona M8:M13, utilizzando i valori iniziali specificati, andiamo a calcolare nella zona J7:J86 i valori teorici.

∆yt	Δx_t	Δx _{t-1}	Δx_{t-2}	Δx_{t-3}	∆x _{t-4}	Valori	(valori effettivi-	
						leonci	valori teorici) ²	
		,						
-0.0026	-0.0035	-0.0006	-0 0004	-0.0017	.0.000		1	
-0.0008	-0.0004	-0.0035	-0.0006	-0.0004	0.0000			STIME INIZIALI DEI PARA
			0.0000	-0.0004	-0.0017			βο
0.0004	-0.0000	-0.0004	-0.0035	-0.0006	-0.0004			0
-0.0012	0.0000	-0.0000	-0.0004	-0.0035	-0.0006			p ₁
0.0003	-0.0003	0.0000	-0.0000	-0.0004	-0.0035			β ₂
-0.0002	-0.0000	-0.0003	0 0000	-0.0000	0.0004			β_3
0.0011	0.0006	0.0000	0.0000	-0.0000	-0.0004			β4

Per calcolare il valore teorico del modello riportato nell'equazione (5) in corrispondenza del mese di giugno 2003 (riga 7), nella cella J7 dobbiamo inserire la formula $\theta(b_0\Delta x_{giugno03} + b_1\Delta x_{maggio03} + \cdots + b_4\Delta x_{febbraico3})$, ossia

= M\$13*(M\$8*E7+M\$9*F7+M\$10*G7+M\$11*H7+M\$12*I7)

e trascinare verso il basso.

Osservazione: la formula in parentesi tonde nell'equazione (6), può essere inserita più facilmente utilizzando gli strumenti di moltiplicazione matriciale e la funzione MATR.PRODOTTO come segue

=M\$13*MATR.PRODOTTO(E7:I7;M\$8:M\$12).

Osservazione: dato che i valori teorici sono molti piccoli, per comodità di lettura, abbiamo utilizzato la formula (6) oppure (7) moltiplicata per 1000.

Per calcolare tutti i sufficiente trascinare verso sì che i riferimenti alla trascinamento.

1	J7	<u></u>	f= =10
T	D	E	F
	∆yt	∆x _t	∆x _{t-1}
2 3			
4 5 6			0.0006
	-0.0026	-0.0035	-0.0000
. 8	-0.0008	-0 0004	-0.0050
9	0.0004	-0.0000	-0.0004
10	-0.0012	0.0000	-0.0001
1	0.0003	-0.0003	0.000
12	-0.0002	-0.0000	-0.000
13	-0.0011	0.0006	-0.000
14	0.0002	-0 0008	0.000
2351			

Dopo aver ricopiat inserire il quadrato degl (1000*D7-J7)^2 deve es

(6)

(7)

2	·	K7	•	f x =
i Nas	1	D	E	F
		∆yt	$\Delta \mathbf{x}_{t}$	∆x _{t-′}
	3 4 5	•		
	6 7- 8	-0.0026 -0.0008	-0.0035 -0.0004	-0.00 -0.00
c.	9	0.0004	-0.0000	-0.0(
1	10	-0.0012	0.0000	-0.01
	11	0.0003	-0 0003	0.0
	12	-0.0002	-0.0000	-0.0
2	13	-0.0011	0.0006	-0.0
e -	14.	0.0002	0.0008	0.0

L'ultimo passo d parametri. Il modo p l'espressione che defir

vincolo $\sum_{j=0}^{4} b_j = 1$ si pu

la funzione che defini valore del vincolo (in inserendo nella cella M N18 il valore 0.

Un modello statistico per l'a

Tiziano Bellini e Marco Riani

294

ule) della zona W16:W21 nella colare nella zona J7:J86 i valori

	L M.
tivi-	•
	· · · ·
STIME	INIZIALI DEI PARAMETRI
βο	0.6195
β1	0.294075
β ₂	0.054233
β3	0
ß₄	0.032192;
6	0.810715

rione (5) in corrispondenza del amo inserire la formula

e (6), può essere inserita più matriciale e la funzione

r comodità di lettura, abbiamo

Per calcolare tutti i valori teorici del modello in corrispondenza di ciascuna osservazione è sufficiente trascinare verso il basso la formula precedente. I dollari nelle espressioni (6) e (7) fanno sì che i riferimenti alla zona che contiene i valori dei parametri non cambino durante il trascinamento.

AND 2010444	J7	• (*	f= =100	0*M\$13*MA	TR.PRODOT	O(E7:17;M	\$8:M\$12}			
1 2 3 4 5	Δyt	E Δx _t	ε Δx _{t-1}	₆ Δx _{t-2}	н Δx _{t-3}	Δx _{t-4}	Valori teorici	k (valori effettivi- valori teorici) ²	<u> </u>	
6 7 8	-0.0026 -0.0008	-0.0035 -0.0004	-0.0006 -0.0035	-0.0004 -0.0006	-0.0017 -0.0004	-0.0008 -0.0017	-1.9469	-	STIME INIZIAL! DEI PARAMETF β ₀ 0.61	र। .95
9 10 11 12 13 14	0.0004 -0.0012 0.0003 -0.0002 -0.0011 0.0002	-0.0000 0.0000 -0.0003 -0.0000 0.0006 -0.0008	-0.0004 -0.0000 -0.0000 -0.0003 -0.0000 0.0006	-0.0035 -0.0004 -0.0000 0.0000 -0.0003 -0.0000	-0.0006 -0.0035 -0.0004 -0.0000 0.0000 -0.0003	-0.0004 -0.0006 -0.0035 -0.0004 -0.0000			$\begin{array}{ccc} \beta_1 & 0.2940 \\ \beta_2 & 0.0542 \\ \beta_3 & & \\ \beta_4 & 0.0321 \\ \theta & 0.8107 \end{array}$	175 233 0 192 715

Dopo aver ricopiato in basso la formula per calcolare i valori teorici, nella colonna K occorre inserire il quadrato degli scostamenti tra valori teorici e valori effettivi. Nella cella K7 la formula (1000*D7-J7)^2 deve essere ricopiata verso il basso.

	К7	▼ (*	f= (100	0*D7-J7)^2						
- (D	E	F	G	H		J	ĸ	L	M.
1	∆yt	Δx_{t}	Δx_{t-1}	Δx_{t-2}	Δx_{t-3}	∆x _{t-4}	Valori teorici	(valori effettivi- valori teorici) ²		
2 3 4 5										
7	-0.0026	-0.0035	-0.0006	-0.0004	-0.0017	-0.0008	-1.9469	0.3686	STIME INIZIALI DEI PARAMI	ITRI
8	-0.0008	-0.0004	-0.0035	-0.0006	-0.0004	-0.0017	-1.0984		τ _{βo}	0 6195
9	0.0004	-0.0000	-0.0004	-0.0035	-0.0006	-0.0004	-0.2588	ł	β ₁ 0.:	294075
10	-0.0012	0.0000	-0.0000	-0.0004	-0.0035	-0.0006	-0:0138	1	β ₂ 0.	054233
11	0.0003	-0.0003	0.0000	-0.0000	-0.0004	-0.0035	-0.2582		β ₃	0
12	-0.0002	-0.0000	-0.0003	0.0000	-0.0000	-0.0004	-0.1150)	β ₄ 0.	032192
13	-0.0011	0.0006	-0.0000	+0.0003	0.0000 .0.0003	0.0000-0-0	0.2879) 2	θ ο.	810715

L'ultimo passo da effettuare prima di avviare il risolutore consiste nel definire i vincoli sui parametri. Il modo più semplice per impostare i vincoli è quello di inserire in una cella l'espressione che definisce il vincolo e nella cella adiacente il risultato del vincolo. Ad esempio, il

vincolo $\sum_{j=0}^{n} b_j = 1$ si può impostare nelle celle M17 e N17 come segue. Nella cella M17 si inserisce

la funzione che definisce la somma dei coefficienti (=SOMMA(M8:M12)) e nella cella N17 il valore del vincolo (in questo caso il numero 1). Similmente, il vincolo $b_0>0$ può essere impostato inserendo nella cella M18 la formula =M8 (M8 è la cella che contiene il valore di b_0) e nella cella N18 il valore 0.

Tiziano Bellini e Marcó Riani

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

<u>.</u>	D	E	F	G	н		J	К	L M 31-	N.G		V07	▼ (1: pot a)
	Avt	Δν.	Δν	Δν	Δ.	Δν	Valori	(valori effettivi-				N94	E
1	дус	шл _t	ΔΛ <u>ί-1</u>	ΔΛt-2	∆∧ t-3	<u>⊶∧t</u> -4	teorici	valori teorici) ²				0.0007	0.0023
2											70	0.0028	0.0009
3 .									11 p		11	0.0020	-0.0088
5									11 - 11 - 11 - 11 - 11 - 11 - 11 - 11		72	-0.0002	0.0083
G											73	-0.0000	-0.0003
7	-0.0026	-0.0035	-0.0006	-0.0004	-0.0017	-0.0008	-1.9469	0.3686 STIME INIZ	IALI DEI PARAMETRI		74	-0.0072	-0.0094
8	-0.0008	-0.0003	-0.0035	-0.0006	-0.0004	-0.0017	-1.0984	0.0764 β ₀	0.6195		75	-0.0043	-0,0046
;	0.0004	0.0000	2 0004	0.0005	0.0000	0.0004	0.0500	0.4004.0			76	-0.0029	-0.0042
9	0.0004	-0.0000	-0.0004	-0.0030	-0.0006	-0.0004	-0.2006	0.4004 β ₁	0.294075		10	-0.0020	-0.0024
10	-0.0012	0.0000	-0.000 0	-0.0004	-0.0035	-0.0008	-0.0138	1.3483 β ₂	0.054233		3 <u>41</u> -	0.0015	-0.0016
11	0.0003	-0.0003	0.0000	-0.0000	-0.0004	-0.0035	-0.2582	0.3483 β ₃	0		78	-0.0010	0,0008
12	-0.0002	-0.0000	-0.0003	0.0000	-0.0000	-0.0004	-0.1150	0.0079 β4	0.032192		79	-0.0009	0.0008
13	-0.0011	0.0006	-0.0000	-0.0003	0.0000	-0.0000	0.2879	1.8848 0	0.810715		80	-0.0021	~0.0031
14	0.0002	-0.0008	0.0006	-0.0000	-0.0003	0.0000	-0.2368	0.1926			01	-0.0012	-0.0014
15	0.0002	-0.0001	-0.0008	0.0006	-0.0000	-0.0003	-0.2096	0.1344			01	-0.0005	-0.0001
16	-0.0001	-0.0002	-0.0001	-0.0008	0.0006	-0.0000	-0.1509	0.0083 VIN	COLI SUI PARAMETRI		82	0,000	0.0000
	0.0000	0.0004	0.0000	0.0001	0.0000	0.0006	0 0000	0 1017 00 01 00	02.01.1		83	0.0005	0.0006
17	-0.0003	0.0001	-0.0002	-0.0001	-0.0008	0.0006	0.0228	0.1017 p0+p1+p2	+p3+p4=1		-84	-0.0003	0,0005
18	-0.0001	0.0001	0.0001	~0.0002	-0.0001	-0,0008	0.0376	0.0097 β0>=0	0.6195	0	85	-0.0004	0.0000
19	-0.0005	0.0002	0.0001	0.0001	-0.0002	-0.0001	0.1283	0.3556 β1>=0	0.294075	0	86	0.0000	-0.0008
20	0.0009	-0.0001	0.0002	0.0001	0.0001	-0.0002	0.0122	0.7445 β2>=0	0.054233	0	97		
21	0.0004	0.0000	-0.0001	0.0002	0.0001	0.0001	0.0041	0.1822 β3>=0	0	0	01		
22	-0.0013	0.0000	0.0000	-0.0001	0.0002	0.000	1 0.0119	1.6100 β4>=0	0.032192	0	88	-	
23	0.0007	0.0001	0.0000	0.0000	-0.0001	0.0002	2 0.0556	0.3701 θ>=0	0.810715	0	89		
											90	1	

Prima di stimare i parametri del modello torniamo al problema finanziario in esame: l'ipotesi iniziale consiste nel fatto che le banche quando vi sono aumenti nei tassi di mercato adeguano repentinamente i tassi di interesse sui prestiti e cercano di ritardare il più possibile l'aumento dei tassi di interesse sulla raccolta; viceversa nel caso di riduzione dei tassi. Al fine di testare tale ipotesi si è diviso l'intervallo di osservazione nei due sottoperiodi gennaio 2003 - ottobre 2008; novembre 2008 - gennaio 2010.

In termini del nostro foglio Excel, questo significa che nel primo caso cerchiamo la combinazione dei parametri che minimizza la somma dei valori contenuti nella zona K7:K71 (periodo gennaio 2003 - ottobre 2008), nel secondo caso quella che minimizza la somma dei valori contenuti nella zona K72:K86. Di conseguenza, per effettuare l'analisi del primo sottoperiodo andremo a inserire in una cella (ad es. K92) la formula che calcola la somma dei quadrati degli scostamenti per il periodo primo considerato.

Dopo aver installa l'espressione da minim effettivi e valori teorici punto, dal menu "Dati"

91 92

93

Visualizza 7 21 212 ZI Ordi a e filtra Valor ΔX_{t-4} $\Delta X_{t,3}$ teoric -0.0017 -0.0008 -1.94 <u>j</u>4 Nella schermata

296

Tiziano Bellini e Marco Riani

Un modello statistico per

/i-			
$)^2$			
,			
686 STIM	E INIZIALI DEI PARA	METRI	
0764 β ₀		0.6195	
4004 B1		0.294075	
3483 B2		0.054233	
3483 Ba		0	
0079 B ₄		0.032192	
8848 0		0.810715	
1926			
1344	. .		
0083	VINCOLI SUI PA		
1017 B0+	-β1+β2+β3+β4=1	۱	1
0097 β0>	>=0	0.6195	0
3556 B1:	>=0	0.294075	0
7445 B2:	>=0	0.054233	0
1822 B3	>=0	0	0
.6100 β4	>=0	0.032192	0
.3701 θ>	=0	0.810715	0

N

89 90 91

92 93

ma finanziario in esame: l'ipotesi ti nei tassi di mercato adeguano are il più possibile l'aumento dei dei tassi. Al fine di testare tale odi gennaio 2003 - ottobre 2008;

e nel primo caso cerchiamo la pri contenuti nella zona K7:K71 he minimizza la somma dei valori l'analisi del primo sottoperiodo cola la somma dei quadrati degli

	K92	• Girbertalani	, f ⊭ =SON	AMA(K7:K71)				
1.5	D	E	F	G	H .	1	J [397]	K
70	0.0007	0.0023	-0.0000	-0.0001	0.0008	-0.0002	1.1505	0.2214
71	0.0028	0.0009	0.0023	-0.0000	-0.0001	0.0008	1.0422	3.2034
72	-0.0052	-0.0088	0.0009	0.0023	-0.0000	-0.0001	-4.0968	1.2236
73	-0.0065	-0.0083	-0.0088	0.0009	0.0023	-0.0000	-6.2463	0.0537
74	-0.0072	-0.0094	-0.0083	-0.0088	0.0009	0.0023	-7.0297	0.0214
75	-0.0043	-0.0046	-0.0094	-0.0083	-0.0088	0.0009	-4.9155	0.4001
76	-0.0029	-0.0042	-0.0046	-0.0094	-0.0083	-0.0088	-3.8427	0.8812
77	-0.0020	-0.0024	-0.0042	-0.0046	-0.0094	-0.0083	-2.6339	0.3806
78	-0.0015	-0 .0016	-0.0024	-0.0042	-0.0046	-0.0094	-1.8038	0.1 20 3
79	-0.0009	0.0008	-0.0016	-0.0024	-0.0042	-0.0046	-0.2011	0.5357
80	-0.0021	-0.0031	0.0008	-0.0016	-0.0024	-0.0042	-1.5566	0.2867
81	-0.0012	-0.0014	-0.0031	0.0008	-0.0016	-0.0024	-1.4760	0.0610
82	-0.0005	-0.0001	-0.0014	-0.0031	0.0008	-0.0016	-0.5637	0.0005
83	-0.0000	0.0000	-0.0001	-0.0014	-0.0031	0.0008	-0.0507	0.0024
84	-0.0005	-0.0006	0.0000	-0.0001	-0.0014	-0.0031	-0.3863	0.0195
85	-0.0004	0.0005	-0.0006	0.0000	-0.0001	-0.0014	0.0631	0.2277
86	0.0000	-0.0006	0.0005	-0.0006	0.000 0	-0.0001	-0.2065	0.0627
87								
88								

21.5631

Dopo aver installato il componente aggiuntivo "Risolutore", selezionare la cella che contiene l'espressione da minimizzare (nel nostro caso la somma dei quadrati degli scostamenti tra valori effettivi e valori teorici per il periodo gennaio 2003 - ottobre 2008, ossia la cella K92). A questo punto, dal menu "Dati", fare click sul pulsante "Risolutore".

Nella schermata che appare procedere come indicato di seguito.

Tiziano Bellini e Marco Riani

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

K92 • (* f= =SOMMA(K7:K71)	
D E F G H I I K	Dopo aver inserito i vince
73 -0.0065 -0.0083 -0.0088 0.0009 0.0023 -0.0000 -6.2463 0.0023	prima di avviare la procedura
74 -0.0072 -0.0094 -0.0083 -0.0088 0.0009 0.0023 -7.0297 0.0037	olleranza che determina la cc
75 -0.0043 -0.0046 -0.0094 -0.0083 -0.0088 <u>0.0009 -4.9155</u> <u>0.4005</u>	pulsante "Opzioni" (V. scherma
77 -0.0029 -0.0042 -0.0046 -0.0094 -0.00 Selezionare "Min", in quanto vogliamo minimizzare il numeri	Deservetti del Pisolu
78 -0.00 parameter and the second sec	Parametri der Kisolu
79 -0.00 0.1203	Imposta cella obiettiv
80 -0.00 Imposta cella obiettivo: Esse Risolvi N Risolvi N Risolvi N	Uguale a: 🔅 N
81 -0.00 Uguale a: ○ Max ⓒ Min ○ Valore di: 0	Cambian <u>d</u> o le celle:
	\$M\$8:\$M\$13
	Vin <u>c</u> oli:
84 -0.007 Chiudi Chiudi 0.0195	\$M\$17 = \$N\$17
Aggiungi R6 Aggiungi Per inserire i vinceli fore 0.2277	\$M\$18 >= \$N\$18
87 In questa casella di testo deve essere inserita la zona Cambia Cick sul pulsante 0.0627	\$M\$20 >= \$N\$20
che contiene i parametri da stimare (nel nostro caso la Elimina "Aggiungi" ed operare	\$M\$21 >= \$N\$21 \$M\$22 >= \$N\$22
Zona Wo.W.13).	Laurace
18 -0.0001 0.0001 -0.0002 -0.0001 -0.0008 0.0006 0.0228 Schermata successiva.	
$\frac{19}{19} -0.0005 0.0002 0.0001 0.0001 -0.0002 -0.0001 0.1283 \qquad 0.376 0.0097 \beta_0 >= 0 \qquad 0.6195 0.619$	
20 0.0009 -0.0001 0.0002 0.0001 0.0001 -0.0002 0.0122 0.7445 $\beta_{1>=0}$ 0.294075 0.	Nella finestra "Opzioni
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"Tolleranza" e "Convergenz
23 0.0007 0.00 Modifica vincolo 1.6100 β 4>=0 0.032192 0	impostare valori diversi di 10
24 -0.0000 0.00 vincolo: 0.3/01 θ>=0 0.8/07/15 0.10	
26 -0.0005 -0.06 OK Annula Ann	
27 -0.0002 -0.002 -0.0026 formula =SOMMA(M8:M12)	Tempo m
inser Dato che il nostro è un vincolo di uguaglianza (somma dei zione she definisod	
(=SQ coefficienti =1), selezionare nella casella a discesa indicata e na	Iterazioni
il ris dalla freccia il simbolo "=". Dopo aver inserito tutti i dati richiesti, per le	Approssit
"Aagiungi".	Tolleranz
	Composition
	Converge
	e 🛄 Pres
	Pres
	Stima
Similmente, per impostare il vincolo di non negatività sul parametro associato alla variabile	
espicativa Δx_t , procedere come indicato nella schermata che segue.	
15 0.0002 -0.0001 -0.0006 0.0006 0.0002 0.0002	
16 -0.0001 -0.0002 -0.0001 -0.0008 0.0006 -0.0000 -0.1509 0.0083 V/NCOLLOW PARAMETER	Osservazione: se la c
17 -0.0003 0.0001 -0.0002 -0.0001 0.0002 0.0000 0.0000	è possibile visualizzare i ris
18 -0.0001 0.0001 -0.0002 -0.0003 -0.0008 0.0028 0.1017 β0+β1+β2+β3+β4=1 1 1 1	Dopo aver fatto clic
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Risolutore" fare click sul p
20 0.000 Modifica vincolo 24075 0.0122 0.7445 β2>=0	
21 0.0004 Reference 0.054233 0 0.0041 0.1822 β3>=0 0 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
24 -0.00001 0 - 0.3701 θ>=0 0.810715 0	
0 2262 D 5202	
γ	
298	
Tiziano Bellini e Marco Riani	Un modello statistico per l'analis

andram angles we are and the second second

Dopo aver inserito i vincoli di non negatività anche per gli altri parametri, l'ultimo passaggio prima di avviare la procedura iterativa di minimizzazione consiste nello specificare il criterio di tolleranza che determina la convergenza. Nella finestra "Parametri del risolutore" fare click sul pulsante "Opzioni" (v. schermata che segue).

Imposta cella obiettivo:	\$M\$18			Picobri
Uguale a: 🔅 Max	۵ <u>M</u> in	🔿 <u>V</u> alore di:	0	
Campian <u>a</u> o le celle:				L <u>. 2</u>
\$M\$8:\$M\$13		(Ess	Inotizza	
Vincoli:			- +outra	
\$M\$17 = \$N\$17				Chiudi
\$M\$18 >= \$N\$18		A	<u>Aggiungi</u>	
\$M\$19 >= \$N\$19		_		
\$M\$20 >= \$N\$20		ш.	Cam <u>b</u> ia	
\$M\$21 >= \$N\$21		ليسا		<u>Opzioni</u>
SM\$22 >= \$N(\$22			Elimina	72

Nella finestra "Opzioni del Risolutore" controllare che le caselle di testo "Approssimazione", "Tolleranza" e "Convergenza" contengano valori piccoli dell'ordine di 0.000001 (se si prova a impostare valori diversi di Tolleranza i risultati si modificheranno leggermente).

Opzioni del Risoluto	ore 🦉 👘		
Tempo massimo:	100 secondi	ОК]
Iterazioni:	100	Annulla)
Approssimazione:	0.000001	Carica modello	
Tolleranza:	0.000001	% <u>S</u> alva modello	
Convergenza:	0.0001		
Presupponi mode	llo lineare 📋	<u>U</u> sa scala automatica	
Presuppo <u>n</u> i non n	egativo 📋	Mostra il risultato delle iterazioni	
Stima	Derivate	Cerca	
() T <u>a</u> ngente	😟 <u>D</u> iretta	Newton	
ن Quadratica	Centrale	🕐 Gradienti c <u>o</u> niugati	

Osservazione: se la casella di controllo "Mostra il risultato delle iterazioni" viene selezionata, è possibile visualizzare i risultati ad ogni iterazione.

Dopo aver fatto click su "OK" nella schermata precedente, nella finestra "Parametri del Risolutore" fare click sul pulsante "Risolvi".

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

Imposta cella obiettivo:	\$M\$18			Risolvi
Uguale a: ① Ma <u>x</u> Cambian <u>d</u> o le celle:	⟨ ⊖ ⟩ <u>M</u> in	⊖ ⊻alore di:	0	<u>?</u>
\$M\$8:\$M\$13 Vin <u>c</u> oli:			Ipoti <u>z</u> za	
\$M\$17 = \$N\$17 \$M\$18 >= \$N\$18 \$M\$19 >= \$N\$19		^	Aggiungi	Chiudi
\$M\$20 >= \$N\$20 \$M\$21 >= \$N\$21 \$M\$22 >= \$N\$22			Cam <u>b</u> ia Elimina	Opzioni

Osservazione: Si no teorici e valori effettivi, uti Dopo la procedura di minin

Output finale: la zona sono stati rispettati.

M	D	E	F	
	∆yt	$\Delta \mathbf{x}_{t}$	Δx _{t-1}	Δ
- 2				
6		-0.0035	-0 0006	-1
8	-0.0008	-0.0004	-0.0035	-1
9	0.0004	-0.0000	~0.0004	-
10	-0.0012	0.0000	-0.0000	-
- 11	0.0003	-0.0003	0.0000	-
12	-0.0002	-0.0000	~0.0003	
13	-0.0011	0.0006	-0.0000	
14	0.0002	-0.0008	0.0006	
15	0.0002	-0 0001	-0.0008	
16	-0.0001	-0.0002	-0.0001	
	-0.0003	0.0001	-0.0002	
18	-0.0001	0.0001	0.0001	
19	-0.0005	0.0002	0.0001	
20	0.0009	-0.0001	0.0002	
21	0.0004	0.0000	-0.0001	
22	-0.0013	0.0000	0.0000	
23	0.0007	0.0001	0.0000	

Ad esempio, il valo punti base nell'euribor, il di 88.5 punti base.

Alla fine del processo di iterazione, appare la finestra "Risultato del risolutore" (v. schermata che segue). Se si sceglie l'opzione "Mantieni la soluzione del risolutore", la zona che contiene i valori dei parametri (zona M8:M13) mostrerà la nuova combinazione di numeri che minimizza il valore contenuto nella cella K92.

	K92	▼ (S ₁ ,,	f= =SON	MMA(K7:K71)					
	D	E	F	G	Н				144
63	-0.0008	-0.0001	-0.0056	0.0048	0.0004	-0.0025	-1 1171	: <u></u>	0.0907
64	0.0007	0. 0 017	-0.0001	-0.0056	0.0048	0.0004	0.3140		0.0007
65	0.0014	0.0008	0.0017	-0.0001	-0.0056	0.0048	0.7251		0.1000
66	0.0006	-0. 0 002	0.0008	0.0017	-0.0001	-0.0056	0.0617		0.3900
67	0.0005	0.0008	-0.0002	0.0008	0.0017	-0.0001	0 4447		0.2003
68	0.0010	-0.0001	0.0008	-0.0002	0.0008	0.0017	0.3031		0.0034
69	-0.0002	-0.0000	-0.0001	0.0008	-0.0002	0.0008	0.0871		0.4010
70	0 .0007	Risultato d	del Risolutore		-		<u>.</u>		0.0660
71	0.0028	Ti Risolute	<u>ne el à orientate</u>	and a set of the	<u> </u>				3 2570
72	-0.0052	vincoli so	no soddisfatti.	suna soluzione	corrente. Tutti	i Rannorti			4 9/152
73 :	-0.0065					Valori			1 0810
74	-0.0072	() <u>Mar</u>	itieni la soluzion	e del Risolutore		Sensibili	tà		0.1568
75	-0.0043	👋 🔿 Ripr	istina i <u>v</u> alori or	iginali		Linnu	-		2 1377
76	-0.0029		ж	Annulia	Salva Sce	nario		10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	3 8817
77	-0.0020	Contraction and the owned		AND THE PARTY OF T			}		2 3703
78	-0.0015	-0.0016	-0.0024	-0.0042	-0.0046	-0.0094	-2.4931	2019-00-00-00-00-00-00-00-00-00-00-00-00-00	1 0735
79	-0.0009	0.0008	-0.0016	-0. 0 024	-0.0042	-0.0046	-0.8515		0.0066
80	-0.0021	-0.0031	0.0008	-0.0016	-0.0024	-0.0042	-1.5503		0.2935
81	-0.0012	-0.0014	-0.0031	0.0008	-0.0016	-0.0024	-1.5178		0.0834
82	-0.0005	-0.0001	-0.0014	-0.0031	0.0008	-0.0016	-0.8056		0.0695
83	~0,0000	0.0000	-0.0001	-0.0014	-0.0031	0.0008	-0.3057		0.0922
84	-0.0005	-0.0006	0. 000 0	~0.0001	-0.0014	-0.0031	-0.4852		0.0017
85	-0.0004	0.0005	-0.0006	0.0000	-0.0001	-0.0014	-0.0465		0.1350
86	0.0000	-0.0006	0.0005	-0.0006	0.0000	-0.0001	-0.1727		0.0470
87									
88									
89									
90									
91									
92							[19.6912
200									
300								Tiziano Bellin	i e Marco Riani

Un modello statistico per l'ana

) del risolutore" (v. schermata itore", la zona che contiene i ie di numeri che minimizza il

Osservazione: Si noti che il valore della somma dei quadrati degli scostamenti tra valori teorici e valori effettivi, utilizzando i parametri iniziali, era pari 21.5631 (v. schermate precedenti). Dopo la procedura di minimizzazione diventa pari a 19.6912.

Output finale: la zona M8:M13 contiene le stime finali dei parametri. Si noti che tutti i vincoli sono stati rispettati.

	D	E	F	G	н		J :	K L	M	N
1	∆yt	$\Delta \mathbf{x}_{t}$	Δx_{t-1}	Δx_{t-2}	∆x _{t-3}	∆x _{t-4}	Valori teorici	(valori effettivi- valori teorici) ²		
3 4 5										
6	-0.0026	-0.0035	-0.0006	-0.0004	-0.0017	-0.0008	-1.7285	0.6814 STIME INIZIALI DEI PA	RAMETRI	
8	-0.0008	-0.0004	-0.0035	-0.0006	-0.0004	-0.0017	-1.2698	0.2006 β ₀	0.447765	
9	0.0004	-0.0000	-0.0004	-0.0035	-0.0006	-0. 0 004	-0.5524	0.8583 β1	0.303928	
10	-0.0012	0.0000	-0.0000	-0.0004	-0.0035	-0.0006	-0.2544	0.8474 β ₂	0.127172	
11	0.0003	-0.0003	0.0000	-0.0000	-0.0004	-0 0035	-0.3318	0.4406 β3	0.062749	
12	-0.0002	-0.0000	-0.0003	0.0000	-0.0000	-0.0004	-0 1279	0.0058 β4	0.058385	
13	-0.0011	0.0006	-0.0000	-0.0003	0.0000	-0.0000	0.1980	1.6460 θ	0.884768	
14 :	0.0002	-0.0008	0.0006	-0.0000	-0.0003	0.0000	-0.1580	0.1296		
15 ;	0.0002	-0.0 0 01	-0.0008	0.0006	-0.0000	-0.0003	-0.1920	0.1218		
16	-0.0001	-0.0002	-0.0001	-0.0008	0.0006	-0.0000	-0.1527	0.0086 VINCOLI SUI P	ARAMETRI	
17 :	-0.0003	0.0001	-0.0002	-0.0001	-0.00 0 8	0.0006	-0.0273	0.0722 β0+β1+β2+β3+β4=1	1	1
18	-0.0001	0.0001	0.0001	-0.0002	-0.0001	-0.0008	-0.0049	0.0031 β0>≕0	0 447765	0
19	-0.0005	0.0002	0.0001	0.0001	-0.0002	-0.0001	0.1029	0.3259 β1>=0	0.303928	0
20	0.0009	-0.0001	0.0002	0.0001	0.0001	-0.0002	0.0332	0.7086 β2>=0	0.127172	0
21	0.0004	0.0000	-0.0001	0.0002	0.0001	0.0001	0.0217	0.1676 β3>=0	0 062749	C
22	-0.0013	0.0000	0.0000	-0 0001	0.0002	0.0001	0.0194	1.6293 β4>=0	0.058385	0
23	0.0007	0.0001	0.0000	0.0000	-0.0001	0.0002	0.0493	0.3779 θ>=0	0.884768	. 0

Ad esempio, il valore di θ pari a 0.885 circa, significa che, di fronte a una variazione di 100 punti base nell'euribor, il sistema creditizio trasferisce, nell'arco massimo di 4 mesi, una variazione di 88.5 punti base.

Tiziano Bellini e Marco Riani

Un modello statistico per l'analisi della dipendenza temporale dei tassi bancari dai tassi Interbancari

11.6 Conclusioni

Il quadro completo della stima dell'elasticità e della vischiosità dei tassi, sui prestiti e su depositi rispetto alle variazioni dell'euribor nei due sottoperiodi gennaio 2003 – ottobre 2008 novembre 2008 – gennaio 2010 e sull'intero periodo in esame gennaio 2003 – gennaio 2010, e riportato nella tabella seguente.

Stima dell'elasticità e della vischiosità dei tassi sui prestiti e sui depositi rispetto all'euribor

IMPIEGHI (PRESTITI)

	gen 03-ott 08	nov 08-gen 10	gen 03-gen 10
bo	0.447	0.764	0.638
b1	0.308	0.215	0.310
b2	0.126	0.000	0.038
b3	0.065	0.000	0.000
b4	0.053	0.020	0.014
Elasticità (_)	0.885	0.779	0.776
R2	0.587	0.973	0.879

RACCOLTA (DEPOSITI)

	gen 03-ott 08	nov 08-gen 10	gen 03-gen 10
bo	0.385	0.488	0.470
b ₁	0.361	0.358	0.373
b ₂	0.121	0.154	0.124
b3	0.133	0.000	0.033
b₄	0.000	0.000	0.000
Elasticità (_)	0.667	0.635	0.638
R2	0.609	0.974	0.918

In base a quanto sopra ruciale, come in Italia, cambi nonetaria non sono trasferiu particolare, se le autorità di po di tassi di interesse applicati *vovershooting*". Il modello esp l'entità di questo *overshootin*, trasferite all'economia reale.

Bibliografia

218.

ATKINSON A.C., RIANI M., F 2000.

GREENE W.H., Econometric / KASHYAP A.K., RAJAN R., Coexistence of Lending KISHAN R.P., OPIELA, T.P., I Money, Credit, and Bai KLEIN M., A theory of the ba

LUSIGNANI G., La gestione d PAVARANI E. (a cura di), And RIANI M., Office XP e Winzi RIANI M., LAURINI F. (2008 Editrice, Bologna, http TAGLIAVINI G., Costo del ca WETH M.A., The pass-thr «Discussion Paper 11 ZANI S., Analisi dei dati sta

Un modello statistico per l'ana

In base a quanto sopra, è possibile evidenziare che, come ci si aspettava, l'elasticità dei tassi sugli impieghi sia maggiore nel periodo di tassi crescenti rispetto a quello di tassi in fase di decrescita, mentre per i tassi di raccolta, anche in relazione ai bassi livelli assoluti dei tassi di interesse, l'elasticità è sostanzialmente stabile. Da un confronto tra tassi attivi e tassi passivi emerge che l'elasticità dei primi è più elevata rispetto a quella dei secondi. Ciò è essenzialmente legato alla maggiore attenzione rivolta dai prenditori di fondi (tipicamente imprese) nella contrattazione dei tassi. Tale maggiore attenzione è palese anche se si osserva il lag temporale di adeguamento alle variazioni dell'euribor. Dalla tabella 1 si evince che, come evidenziato anche in merito all'adozione del modello lineare ai tassi attivi, l'adeguamento alle variazioni dei tassi di mercato avviene entro circa due mesi. Per quanto riguarda i tassi passivi, invece, l'adeguamento è più lento e si esaurisce nel corso di circa quattro mesi. Tutto questo palesa che i tassi attivi sono meno vischiosi rispetto a quelli passivi mettendo in evidenza le asimmetrie tra banche e clienti di cui si è accennato nell'introduzione.

Tiziano Bellini e Marco Riani

ità dei tassi, sui prestiti e sui ennaio 2003 – ottobre 2008, naio 2003 – gennaio 2010, è

ui prestiti

gen 03-gen 10
0.638
0.310
0.038
0.000
0.014
0.776
0.879
gen 03-gen 10
0.470
0.373
0.124
0.033
0.000

0.638

si aspettava, l'elasticità dei tassi etto a quello di tassi in fase di bassi livelli assoluti dei tassi di tassi attivi e tassi passivi emerge Ciò è essenzialmente legato alla mprese) nella contrattazione dei g temporale di adeguamento alle ciato anche in merito all'adozione lei tassi di mercato avviene entro iamento è più lento e si esaurisce vi sono meno vischiosi rispetto a e clienti di cui si è accennato In base a quanto sopra, si ricava che in un'economia ove l'intermediazione bancaria è cruciale, come in Italia, cambiamenti nei tassi di interesse sollecitati attraverso manovre di politica monetaria non sono trasferiti all'economia reale immediatamente e in misura integrale. In particolare, se le autorità di politica monetaria intendono raggiungere determinati *targets* in termini di tassi di interesse applicati nella raccolta e nell'impiego fondi, è necessario dar corso a un "overshooting". Il modello esposto, infine, partendo dalla stima dell'elasticità, consente di misurare l'entità di questo overshooting e valutare con quale ritardo le decisioni dei *policy makers* saranno trasferite all'economia reale.

Bibliografia

ATKINSON A.C., RIANI M., Robust Diagnostic Regression Analysis, Springer Verlag, New York, 2000.

GREENE W.H., Econometric Analysis, Second Edition, Macmillan, New York, 1993.

- KASHYAP A.K., RAJAN R., STEIN J.C., Banks as Liquidity Providers: An Explanation for the Coexistence of Lending and Deposit-Taking, "The Journal of Finance", 57, 2002, pp. 33-73.
- KISHAN R.P., OPIELA, T.P., Bank Size, Bank Capital, and the Bank Lending Channel, «Journal of Money, Credit, and Banking», 32, No. 1, 2000, pp. 121-141.
- KLEIN M., A theory of the banking firm, «Journal of Money, Credit and Banking», 3, 1971, pp. 205-218.

LUSIGNANI G., La gestione dei rischi finanziari nella banca, Il Mulino, Bologna, 1996.

PAVARANI E. (a cura di), Analisi finanziaria, Mc Graw Hill, Milano, 2001.

- RIANI M., Office XP e Winzip senza sforzo, Pitagora Editrice, Bologna, 2002.
- RIANI M., LAURINI F. (2008), Modelli statistici per l'economia con applicazioni aziendali, Pitagora Editrice, Bologna, <u>http://www.riani.it/RL</u>.

TAGLIAVINI G., Costo del capitale, analisi finanziaria e corporate banking, Egea, Milano, 1999.

WETH M.A., The pass-through from market interest rates to bank lending rates in Germany, «Discussion Paper 11/02», Economic Research Centre of the Deutche Bundesbank, 2002.

ZANI S., Analisi dei dati statistici I. Osservazioni in una e due dimensioni, Giuffrè, Milano, 1994.

Tiziano Bellini e Marco Riani