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Abstract. The assumption of multivariate normality provides the customary pow-
erful and convenient ways of analysing multivariate data: if the data are not normal,
the analysis may often be simplified by an appropriate transformation. In this con-
text, the most widely used test is the likelihood ratio, which requires the maximum
likelihood estimate of the transformation parameter for each variable. Given that
this estimate can only be found numerically, when the number of variables is large
(> 20) it is impossible or infeasible to compute the test. In this paper we intro-
duce alternative tests which do not require the maximum likelihood estimate of the
transformation parameters and prove algebraically their relationships. We also give
insights both using theoretical arguments and a robust simulation study, based on the
forward search algorithm, about the distribution of the tests previously introduced.
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1 Introduction

The analysis of data is often improved by using a transformation of the response,
rather than the original response itself. There are physical reasons why a transfor-
mation might be expected to be helpful in some examples. If the data arise from a
counting process, they will have a Poisson distribution and the square root trans-
formation will provide an approximately constant variance, independently of the
mean. Concentrations are nonnegative variables and so cannot be subject to additive
errors of constant variance. The effect is most noticeable if there are observations
both close to, and far from, zero.

The parametric family of power transformations introduced by Box and Cox
(1964) was extended to multivariate data by Andrews et al. (1971) and by Gnanade-
sikan (1977). Velilla (1993) compares marginal and joint transformations and gives
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further references to related work. A full discussion of univariate transformations,
including deletion diagnostics, is given by Atkinson (1985). Similar techniques for
multivariate transformations have been introduced by Atkinson (1995).

In this paper we consider transformations for multivariate data and explore the
theoretical relationships between a likelihood ratio test which requires the maxi-
mum likelihood estimate of the transformation parameters and other tests based on
the use of constructed variables which lead to a multivariate multiple regression
formulation in which the parameters are different for each response. The estimates
are related solely through the correlation of the responses. This structure is known
in the literature as the seemingly unrelated regression model (SUR regression). The
theoretical contribution of the paper is a theorem which proves the asymptotical
equivalence of two constructed variables tests.

Given that both the likelihood ratio and the constructed variable tests are not
robust and suffer from masking and swamping problems, in order to provide in-
formation about the presence of influential observations and the inferential effect
of each unit, we embed all the tests inside a forward search approach (Atkinson
and Riani 2000). The application of the forward search to transformation of the
response in univariate regression data is described in Riani and Atkinson (2000).
Examples of applications of the forward search to transformations in multivariate
and discriminant analysis are given by Riani and Atkinson (2001). Up to now in
the literature, the results of the transformation tests have been compared using the
asymptotic confidence bands of the χ2 distribution. The computational contribution
of this paper is a robust simulation study to investigate the small sample distribution
induced by the forward search on all the tests which have been introduced.

The structure of the paper is as follows. In Sect. 2 we recall the likelihood ra-
tio test for testing multivariate transformations. In Sect. 3 we introduce other tests
which, unlike the likelihood ratio, do not require the maximum likelihood estimate
of the transformation parameters and give a theorem which proves their relation-
ships. In Sect. 4 we perform a robust simulation study in order to investigate both
the small sample and the asymptotic distribution of the tests previously introduced.
Section 5 concludes and gives suggestions for further research.

2 Multivariate transformations to normality

For multivariate data let yi be the v×1 vector of responses at observation i with yij

the observation on response j. In the extension of the Box and Cox (1964) family
to multivariate responses the normalized transformation of yij is

zij(λj) = (yλj

ij − 1)/λj ẏ
λj−1
j (λ �= 0)

= ẏj log yij (λ = 0),
(1)

where ẏj is the geometric mean of the jth response. The value λj = 1 (j =
1, . . . , v) corresponds to no transformation of any of the responses. We assume a
multivariate linear regression model of the form

Z(λ) = (X1β1, . . . , Xvβv) + Ξ
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where Z(λ) is a n×v matrix of normalized responses whose ij-th generic element
zij(λj) is defined in Eq. (1). The Xj , j = 1, . . . , v are n × p design matrices not
necessarily equal. The βj are unknown vector of parameters and Ξ is an n × v
random matrix whose rows are i.i.d. If the transformed observations are normally
distributed with mean µi for the i-th observation and covariance matrix Σ, twice
the profile loglikelihood of the observations is given by

2Lmax(λ) = const−n log |Σ̂(λ)|−
n∑

i=1

{zi(λ)−µ̂i(λ)}T Σ̂−1(λ){zi(λ)−µ̂i(λ)}

= const − n log |Σ̂(λ)| −
n∑

i=1

ei(λ)T Σ̂(λ)−1ei(λ). (2)

where zi(λ) = (zi1(λ1), . . . , ziv(λv))T denotes the i-th row of matrix Z(λ). In
(2) µ̂i(λ) and Σ̂(λ) are derived from least squares estimates for fixed λ and ei(λ)
is the v × 1 vector of residuals.

The calculation of µ̂i(λ) and Σ̂(λ) is simplified when the matrix of explanatory
variables X is the same for all responses. As a result, the least squares estimates
are found by independent regression on each response, yielding the p×v matrix of
parameter estimates B(λ) = (β̂1, . . . , β̂v) = (XT X)−1XT Z(λ). In other words,
if the explanatory variables are the same for all responses the maximum likelihood
estimators of βj can be obtained regressing the j-th column of Z(λ) (say zCj ) on
X (j = 1, . . . , v) (see for example Hamilton 1994, p. 318). On the other hand,
when the Xj are different, maximum likelihood estimation requires iteration. In
Sect. 3 we will exploit this fact in connection with a SUR type model.

When the X are the same, the maximum likelihood estimator of Σ is given by

nΣ̂(λ) =
n∑

i=1

ei(λ)ei(λ)T

= {Z(λ) − XB(λ)}T {Z(λ) − XB(λ)}. (3)

When these estimates are substituted in (2), the profile loglikelihood reduces to

2Lmax(λ) = const′ − n log |Σ̂(λ)|. (4)

So, to test the hypothesis λ = λ0, asymptotically the statistic

TGLR = n log{|Σ̂(λ0)|/|Σ̂(λ̂)|} (5)

has aχ2 distribution onv degrees of freedom. In Eq. (5) λ̂ is the vector ofv parameter
estimates maximising (4), which is found by numerical search. Of course, it makes
no difference in the (generalized) likelihood ratio test for the value of λ whether
we use the maximum likelihood estimator of Σ or the unbiased estimator Σ̂u(λ)
where

(n − p)Σ̂u(λ) =
n∑

i=1

ei(λ)ei(λ)T .
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In the remaining part of this paper we will refer to Eq. (5) as the generalized
likelihood ratio test. We will reserve the words likelihood ratio test, for the test
in which we consider the log of the ratio of two likelihoods associated to two
predetermined values of the vector λ.

3 Multivariate transformation tests based on constructed variables

In order to validate a particular transformation or to test its sensitivity to the presence
of outliers or atypical observations, we require to find TGLR for a variety of values
of the vector λ0 = (λ01, . . . , λ0v)T and for subsets of observations. Certainly,
when the number of variables and/or the number of observations is large this may
lead to computational problems. An advantage of the procedure of this section is
that it brings the diagnostic method into the framework of multivariate regression
analysis and does not require non linear numerical maximization procedures.

Constructed variables for the univariate Box-Cox transformation are described
in detail in Atkinson (1985) and Atkinson and Riani (2000). The model is linearized
by Taylor expansion which leads to inclusion in the regression of a constructed vari-
able. More specifically, when the Box-Cox transformation is applied to multivariate
data, linearization of the transformation (1) produces

zij(λj) ≈ zij(λ0j) + (λj − λ0j)
∂zij(λ)

∂λj

∣∣∣∣
λj=λ0j

. (6)

This leads to the nv values of the v constructed variables

wij(λ0) =
∂zij(λ)

∂λj

∣∣∣∣
λj=λ0j

= y
λ0j

ij log yij/(λ0j ẏj
λ0j−1) − zij(λ0)(1/λ0j + log ẏj), (7)

in which the j-th response is differentiated with respect to λj . Provided the model
for z(λ) contains a constant, regression on (7) is equivalent, in the special cases of
λ = 1 and 0, to regression on the variables

w(1) = y{log(y/ẏ) − 1} (λ = 1)
w(0) = ẏ log y(log y/2 − log ẏ) (λ = 0).

(8)

In (8) the subscripts i and j have been omitted for typographic clarity.
If the explanatory variables are the same for each response, the combination

of Eq. (6) and the regression model for the j-th response zCj (λ) = Xβj(λ) + εj ,
where zCj

(λ0) is the j-th column of matrix Z(λ0), yields

zCj (λ0) = Xβj(λ0) − (λj − λ0j)wj(λ0) + εj

= Xβj(λ0) + γjwj(λ0) + εj , j = 1, . . . , v. (9)

where wj(λ0) is the constructed variable for response j and γj = −(λj − λ0j).
Testing that λ0 is the correct transformation of the response is equivalent to testing
that the γj in (9) are zero. Note that, even if the matrix of explanatory variables X is
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the same for all responses, Eq. (9) shows that inclusion of the constructed variables
means that the variables for regression are no longer the same for all responses. As
a result, the simplification of Sect. 2 no longer holds and the covariance Σ between
the v responses has to be allowed for in estimation and independent least squares is
replaced by generalized least squares. In the particular form (9) the parameters for
each response are different, the estimates being related only through covariances
of the zCj

(λ). This special structure is known as seemingly unrelated regression
(SUR) (Zellner 1962). More in detail, if we suppose that matrix X is the same for
all responses, the above set of v equations can be written as one combined equation

z∗ = X∗β + W ∗γ + ε∗ = (X∗, W ∗)δ + ε∗ (10)

where z∗ =vec(zC1(λ0), . . . , zCv (λ0)),

X∗ = Iv ⊗ X, W ∗ =




w1(λ0) 0 . . . 0
0 w2(λ0) . . . 0

. . . . . .
. . . . . .

0 0 . . . wv(λ0)


 , (11)

δ = (βT , γT )T = (βT
1 , . . . , βT

v , γ1, . . . , γv)T and ε∗ ∼ N(0, Σ ⊗ In). The
symbol ⊗ denotes the Kronecker product. In this form the model is that for a
vector of nv observations on a heteroscedastic univariate response. Twice the profile
loglikelihood of the observations stacked in the combined equation is given by

2Lmax(λ) = const − log |Σ−1(λ) ⊗ In|
− {z∗ − (X∗, W ∗)δ}T (Σ−1(λ) ⊗ In) {z∗ − (X∗, W ∗)δ} . (12)

Differentiation of Eq. (12) with respect to δ yields

δ̂ =
{

(X∗, W ∗)T (Σ−1(λ) ⊗ In) (X∗, W ∗)
}−1

(X∗, W ∗)T (Σ−1(λ) ⊗ In)z∗.

(13)

This implies that for a fixed value of λ the maximum likelihood estimator of δ
is nothing but the GLS estimator resulting from Eq. (10). Note that the SUR model
(10) is not motivated by heteroscedasticity between independent rows, but rather
as a convenient way to adapt for different explanatory variables, as created by the
presence of the constructed variables wj(λ).

Because Eq. (13) contains Σ−1(λ) ⊗ In, estimation of Σ is required for the
procedure to be operational. The estimation proceeds in two or more steps:

1. Obtain Σ̂0, an estimate of Σ from independent regressions with zCj (λ0)
regressed on X and wj(λ0).

2. Obtain an estimate of δ based on Eq. (13) using Σ̂−1
0 (seemingly unrelated

regression step).
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3. Iteration in the estimation of Σ and δ is possible, starting with the estimate of
δ obtained from step 2 and repeating the seemingly unrelated regression step
until there is no significant change in the estimates.

In order to test H0 : γ = 0 we can use a Wald criterion applied to generalized least
squares or the likelihood ratio test. In both cases, under the alternative hypothesis,
although not under the null, independent least squares is replaced by seemingly
unrelated regression.

3.1 Wald type statistic

In the context of SUR regression, the Wald test assumes the form

TW = (r − Rδ̂)T
[
R
{

(X∗, W ∗)T (Σ̂−1(λ) ⊗ I)(X∗, W ∗)
}

RT
]−1

(r − Rδ̂),

(14)

where, as usual, r = Rδ is a known q-element vector and R is a known matrix
of full row rank of order q × v(p + 1). If we are interested in testing that all the
coefficients of the constructed variables are equal to zero, γj = 0, j = 1, . . . , v,
q = v, r = 0 and R = (0, Iv) where 0 denotes a zero matrix of dimension v × pv.

3.2 Likelihood ratio test

In order to test γ = 0 we can also use a modified version of the generalized likeli-
hood ratio test introduced in the previous section. The two determinants in Eq. (5)
can be replaced respectively by |ET E| and |ET (w)E(w)|. E = (eC1 , . . . , eCv ) is
the matrix of the residuals obtained from independent regression of each zCj (λ0)
on each set of explanatory variables

E = (zC1(λ0) − Xβ̂1(λ0), . . . , zCv (λ0) − Xβ̂v(λ0))
= Z(λ0) − XB(λ0).

E(w) = (eC1(w), . . . , eCv (w)) is the matrix of residuals obtained applying SUR
to the regression model which includes X and wj (Eq. 10). In other words:
vec(E(w)) = z∗ − (X∗, W ∗)δ̂.

This leads to the following expression

TLR = n ln
|ET E|

|ET (w)E(w)| . (15)

Two versions of the statistics given in Eqs. (14) and (15) are possible. They
differ in the estimated covariance matrix Σ̂(λ) which can either be calculated from
the residuals of independent regression or iterated from this starting point using
SUR regression.

It is clear that the two tests given in Eq. (14) and (15) tackle the problem of testing
γj = 0, j = 1, . . . , v using different mathematical instruments. We have called
these two tests likelihood ratio and Wald, but they should have been called Wald-
score and likelihood ratio-score, because they use a constructed variable found
using a Taylor series expansion (that is a score argument).
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3.3 Asymptotic equivalence

The main theoretical contribution of this paper is the following theorem which
states the relationship between the two tests.

Definition. Asymptotic Equivalence. Two sequences of tests {T1,n, n = 1, 2, . . . }
and {T2,n, n = 1, 2, . . . }, with a common parameter space Fn for each n, are
asymptotically equivalent if (Le Cam 1986, Le Cam and Yang 1990, Cox and
Hinkley 1974)

T1,n − T2,n → op(1) as n → ∞
where the general notation op(na) means a random variable Zn such that for any
ε > 0

lim
n→∞ pr(n−a|Zn| > ε) = 0

and op(1) denotes a random variable that is o(1) in probability.

Theorem. for testing the null hypothesis H0 : γj = 0, j = 1, . . . , v, the sequence
of tests TW (n) is asymptotically equivalent to the sequence TLR(n).

The proof which is given in the Appendix is based on a preliminary result
proved as a lemma to the theorem which states that the variance-covariance matrix
of the residuals from regressing Y on X and W can be partitioned as the sum
of two idempotent quadratic forms. The first comes from the matrix X alone, the
second is a function of both X and W . The core of the proof uses a Taylor series
expansion and the matrix operators of linear algebra. The impact of this result on
asymptotic equivalence, is that an investigation using Eq. (14) automatically yields
asymptotically analogous results to an investigation based on Eq. (15).

4 The forward distribution of the tests

None of the tests introduced in the previous sections is robust to the presence of
outliers. In order to provide information about the effect of outliers on multivariate
transformations we can use a forward search through the data and monitor the values
of the tests. A full description of the forward search for the analysis of multivariate
transformations can be found in Riani and Atkinson (2001). It is made up of three
steps: 1) choice of the initial subset, 2) progressing in the search and 3) monitoring
the search. We find an initial subset of moderate size by robust analysis of the
matrix of bivariate scatter plots. The initial subset of r observations consists of those
observations which are not outlying on any scatter plot, found as the intersection
of all points lying within a robust contour containing a specified portion of the
data (Riani and Zani 1997) and inside the univariate boxplot. As concerns 2), in
every step of the forward search given a subset of size m (m = r, . . . , n − 1), we
move to a subset of size (m + 1) by selecting the (m + 1) units with the (m + 1)
smallest Mahalanobis distances. These distances are calculated using in every step
the variables transformed as suggested by the null hypothesis. For multivariate
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transformations Riani and Atkinson (2001) monitor a sequence of forward plots
of test statistic (5) and of parameter estimates to obtain transformations which
describe most of the data, with the outliers entering at the end of the searches. The
monitoring of the units entering at each step enables us to evaluate the effect of
the introduction of each observation on the results of the test statistics. Up to now
the results of the generalized likelihood ratio test (5) have been compared with
the asymptotic χ2

v distribution. The new contribution given by this section is the
investigation, through the use of empirical confidence envelopes, not only of the
asymptotic distribution of the test statistics introduced in the previous sections, but
also of their small sample distribution induced by the application of the forward
search.

4.1 Heads data

In order to illustrate the properties of the different tests we start by using a data
set of six readings on the dimensions of the heads of 200 twenty year old Swiss
soldiers. The data are described by Flury and Riedwyl (1988, p. 218) and also by
Flury (1997, p. 6). The variables are:

y1: minimal frontal breadth
y2: breadth of angulus mandibulae
y3: true facial height
y4: length from glabella to apex nasi
y5: length from tragion to nasion
y6: length from tragion to gnathion.

Diagrammatic front and profile views of a head illustrating these measurements are
on p. 223 of Flury and Riedwyl (1988).

The data were collected to determine the variability in size and shape of heads
of young men in order to help in the design of a new protection mask for the Swiss
army. Because of the variations in human heads, it was clear that one mask could
not be satisfactory for all soldiers. The aim was to find a few typical head sizes and
shapes which, it was hoped, would make it possible to provide satisfactory masks
for all soldiers. If the data have a multivariate normal distribution, the standard
techniques of multivariate data analysis can be used to determine the best few
standard types.

Figure 1 gives the forward plot of the generalized likelihood ratio test for the
hypothesis of no transformation. The horizontal lines are the 5%, 10%, 25%, 50%,
75%, 90%, 95% and 99% confidence bands of the theoretical asymptotic χ2

6 distri-
bution. The dotted lines are the empirical confidence bands based on 1000 simu-
lations constructed using 1000 independent forward searches. In order to generate
each set of simulated data we multiplied the n× v random numbers extracted from
N(0, 1) by the Choleski decomposition of the covariance matrix of the transformed
observations (yλ01

C1
, . . . , yλ0v

Cv
) and added the mean of the transformed observations

obtaining, say, a matrix (y0
C1

, . . . , y0
Cv

). Finally, for each simulated variable we
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considered the inverse transformation (y0
Cj

)(1/λ0j), j = 1, 2, . . . , v. It is clear that
if λ0j = 0, the transformation is log yCj

and the inverse is exp(y0
Cj

). To these
simulated data we applied the forward search in order to obtain for each step m the
statistic of interest (in this case the generalized ratio test under the null hypothesis
H0 : λ = λ0). We repeated this procedure for each set of simulated data and fi-
nally we sorted the simulations in each step of the forward search to compute the
empirical quantiles.

Figure 1 clearly shows that the forward distribution of the empirical curves
is increasing and always below the theoretical ones with the difference getting
smaller as the search progresses. The forward search orders the data according to
their agreement with the suggested model with remote observations entering the
subset in the last steps.
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Fig. 1. Heads data: forward plot of the generalized likelihood ratio test for the hypothesis of no trans-
formation. The horizontal lines are the 5%, 10%, 25%, 50%, 75%, 90%, 95% and 99% confidence
bands of the χ2

6 distribution. The dotted lines are the corresponding empirical confidence bands

These remote observations are those most likely to produce evidence for trans-
formation, so we expect the increasing smooth behaviour of the empirical confi-
dence bands. The plot shows that during the central part of the forward search the
value of the test is generally around the 75% quantile suggesting that these data
do not have to be transformed. In the final two steps of the search (m = 199 and
m = 200), with the introduction of the units 104 and 111, the generalized likeli-
hood ratio statistic shows a sudden jump causing the value to be significant at 0.05
level, when compared with a χ2

6. The empirical superimposed forward confidence
bands show that the effect of the introduction of the last two units is even more
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pronounced than it would seem using the theoretical asymptotic bands, because
they move the value of the test outside the 99% empirical confidence band. Units
104 and 111 have large values of y4, more remote from this distribution than any
other units for any variable, but they are not outlying in any other marginal distri-
bution. Our conclusions about this data set is that multivariate normality provides
a useful model and that there may be two people for whom the measurements of
y4 is incorrect.

Let us now study the forward behaviour of the tests introduced in Sect. 4 based
on the use of constructed variables. Figure 2 shows the monitoring of the results of
the constructed variable tests.
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Fig. 2. Heads data: forward plot of the constructed variables tests for the hypothesis of no transformation.
The horizontal lines are the 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99% confidence bands of the
χ2

6 distribution

For each of the two tests (Wald and likelihood ratio) we computed both the
values obtained using the estimate of Σ̂(λ) coming from the first iteration and
those obtained after convergence. This picture clearly shows that in this example
there is close agreement between the results of the likelihood ratio test and of
the Wald test. The other point to notice is that the results of the two tests do not
seem to change appreciably if we use an estimate of Σ based on the first or final
iteration. Another thing which is worthwhile to remark is that the shape of the
forward constructed variables tests seems to follow closely that of the generalized
likelihood ratio given in Fig. 1 as can be seen by plotting one line against the other.
However, the results of the constructed variables tests are always much higher than
those in Fig. 1. In Fig. 2 are also given the reference quantiles of a χ2

6 distribution.
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Using such a reference distribution we would claim that in this data set the evidence
of transformation is spread throughout the data. This conclusion would be strongly
in disagreement with the results of the generalized likelihood ratio test given in
Fig. 1.

Figure 3 gives again the monitoring of the likelihood ratio test based on the
final iteration and the associated forward confidence bands. This picture clearly
shows that simulation envelopes always lie above the associated quantiles of the
χ2 distribution. The gap between the two curves seems to increase in the final part
of the search.
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Fig. 3. Heads data: forward plot of the likelihood ratio test based on constructed variables using an
estimate of Σ coming from final iteration. The horizontal lines are the 5%, 10%, 25%, 50%, 75%,
90%, 95%, and 99% confidence bands of the χ2

6 distribution. The dotted lines are the corresponding
empirical confidence bands

This heavy tails phenomenon has been analysed for the score test for transfor-
mations of univariate data by Atkinson and Riani (2002). These authors conclude
that the longer tails are due to the presence of the observations in the constructed
variables on which the response is regressed. Note that the longer tail effect becomes
more pronounced in the final part of the search when the most remote observations
are included in the subset. The simulations show that the forward values of the
likelihood ratio test are never significant at the 5% level in the central part of the
search and that only in the final two steps (introduction of units 104 and 111) they
become significant at 1%. Note that these results are perfectly in agreement with
those previously obtained from the monitoring of the generalized likelihood ratio
test (see Fig. 1). The conclusion which comes from the analysis of this example
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is that the multivariate transformation tests based on constructed variables have a
forward distribution which is always above the reference χ2 distribution and this
difference increases in the final part of the search. The judgement about the signif-
icance of the tests coming from the use of constructed variables must be done only
after superimposing forward simulation envelopes.

4.2 Emilia-Romagna data

The data set we consider in this section is made up of 341 observations and 28
variables. The 341 observations are from all the municipalities of Emilia-Romagna,
a region of Italy. Nearly all the variables are indices related to different aspects of
the quality of life. A full description of these data can be found in Atkinson et al.
(2004). It is clear that in this example with 28 variables it is impossible to use
the generalized likelihood ratio test. Atkinson et al. (2004) tackled the problem of
finding the best transformation parameters to achieve approximate normality by
dividing the 28 variables into three categories (demographic, income and wealth
and industrial production) and analyzing each set of variables separately.

The contribution of this section is to investigate the set of transformation param-
eters found by Atkinson et al. (2004) by analyzing each set of variables separately
using a constructed variable approach and the tests given in Sect. 3. Given that
we expect that the reference distribution is not a χ2

28, we have computed forward
simulation confidence envelopes. Figure 4 gives the forward plot of the likelihood
ratio which comes from final iteration with the theoretical and empirical confidence
bands. This figure shows that the simulated quantiles are well above those of the
χ2

28 distribution. The value of the test seems generally to lie between the 95% and
99% envelopes with a decrease before the final part of the search. It is interesting
to notice the sudden upward jump due to the inclusion of the outliers in the final
part of the search. The last 21 units which enter the forward search are all (except
two) poor rural communities belonging to the mountainous area of the region. The
monitoring of Mahalanobis distances during the forward search shows that these
municipalities are quite different from the rest of the data. These units tend to have
similar problems with an aging population, and low indexes of wealth, education,
housing and industrial development. The conclusion is that in this data set using
the transformation parameters we can claim to have reached only approximate nor-
mality, because the values of the test are at the boundary of significance. Finally,
the forward search reveals a series of outliers which have an enormous effect on
the choice of the transformation.

5 Conclusions

In this paper we have introduced different tests based on constructed variables for
the analysis of multivariate transformations. The main theoretical contribution of
this paper is a theorem which states the asymptotic equivalence of two constructed
variable tests.
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Fig. 4. Emilia Romagna data: monitoring of the likelihood ratio test based on the final iteration. The
horizontal lines are the 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99% confidence bands of the χ2

28
distribution. The dotted lines are the corresponding empirical confidence bands

Given that both the tests based on the likelihood ratio and those based on the
use of constructed variables are not robust to the presence of outliers, in order to
provide information about the effect of outliers on multivariate transformations we
embedded the tests in a forward search context and monitored their values. Up to
now in the literature the results of the tests have been compared with the theoretical
asymptotic χ2 distribution.

The computational contribution given in this paper has been the investigation
of the small sample distribution of the tests induced by the forward search. In all
the examples which have been considered we saw that the constructed variable
tests showed a good agreement in each step of the forward search irrespective
of the fact of using an estimate of the covariance matrix of the residuals coming
from first or final iteration. As concerns the forward empirical confidence bands
of the tests, we showed that the generalized likelihood ratio tests are characterized
by a smooth increasing behaviour as the search progresses and asymptotically
tend to the nominal values. On the other hand, we showed that the tests based on
constructed variables tend to have a forward heavy tailed distribution. This implies
that, if the researcher decides to use constructed variable tests, the judgement about
the eventual significance of the values which are obtained must be made only
using simulation envelopes. Conversely, the use of horizontal asymptotic confidence
bands to judge the significance of the forward values of the generalized likelihood
ratio test implies that we shall be conservative with respect to the null hypothesis.
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Appendix: proof of the asymptotic equivalence
of the constructed variable tests

In order to show the relationship between the two tests given in Eqs. (14) and (15),
we first have to find an expression relating the variance-covariance matrix of the
residuals from regressing Y on X and W , to the variance covariance matrix of
residuals from regressing only on X , where W is the n × v matrix which contains
the constructed variables.

Lemma. In the multiple multivariate regression model Y = XB + WΓ + Ξ ,
where Γ = diag (γ1, . . . , γv) is a diagonal matrix, the total sum of squares of the
residuals can be partitioned as

(n − p − 1)Sw = ET (w)E(w) = Y T AXY − Y T FY (A.1)

where F = AXW{WT AXW}−1WT AX , AX = In − X(XT X)−1XT .
Y T AXY is the matrix of residual sum of squares after regressing only on X ,
and Y T AXW{WT AXW}−1WT AXY is the reduction in the matrix of residual
sum of squares due to Γ after adjusting for B.

Proof.

ET (w)E(w) = (Y − XB − WΓ )T (Y − XB − WΓ ) (A.2)

= Y T Y − Y T XB − Y T WΓ + BT (XT XB + XT WΓ − XT Y )
+ΓT (WT XB + WT WΓ − WT Y ).

After differentiating with respect to B and Γ and equating to zero, we obtain the
following system of equations

XT XB + XT WΓ = XT Y (A.3)

WT XB + WT WΓ = WT Y. (A.4)

Rearranging Eq. (A.3) we obtain

B̂ = (XT X)−1XT Y − (XT X)−1XT WΓ̂ . (A.5)

Substitution of this value into (A.4) yields, after rearrangement, to

Γ̂ = (WT AXW )−1WT AXY. (A.6)

Using the expressions just found for B̂ and Γ̂ and the constraints implied by
Eqs. (A.3) and (A.4) we can write

(n−p−1)Sw=ET (w)E(w) = Y T Y − Y T XB̂ − Y T WΓ̂

= Y T AXY −Y T AXW{WT AXW}−1WT AXY.
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This is the multivariate generalization of Eq. (2.29) given in Atkinson and Riani
(2000):

(n − p − 1)s2
w = yT Ay − (yT Aw)2/(wT Aw). (A.7)

Remark. the projection matrix F = AXW{WT AXW}−1WT AX is symmetric
and idempotent.

Theorem. for testing the null hypothesis H0 : γj = 0, j = 1, . . . , v, the sequences
of tests TW (n) is asymptotically equivalent to the sequence TLR(n).

We begin the proof by showing that, under the null hypothesis H0 : γ = 0,
Eq. (14) reduces to a difference in residual sum of squares. If we apply the Choleski
decomposition to the matrix Σ̂ as follows: Σ̂ ⊗ In = E(w)T E(w)/(n − p − 1) ⊗
In = (CT C)−1 ⊗ In, where C is lower triangular, we can rewrite model (10) as

z∗
C = X∗

Cβ + W ∗
CγC + ε∗

C , (A.8)

where z∗
C = (C⊗In)z∗,X∗

C = C⊗X ,W ∗
C = (C⊗In)W ∗ and ε∗

C = (C⊗In)ε∗ ∼
N(0, In×v).

Now, given that

R = (0, Iv) (A.9)

where v is the number of rows of γ, we obtain that Rδ = γ. Similarly, the expression[
R
{
(X∗, W ∗)T (Σ−1 ⊗ I)(X∗, W ∗)

}−1
RT
]

simply extracts the last v rows and

columns of the matrix (
X∗T

C X∗
C X∗T

C W ∗
C

W ∗T
C X∗

C W ∗T
C W ∗

C

)−1

. (A.10)

Applying the rules of the inverse of a partitioned matrix (see for example Mardia
et al. 1979, p. 459) it follows that

R
{

(X∗, W ∗)T (Σ̂−1 ⊗ I)(X∗, W ∗)
}−1

RT =
(
W ∗T

C AX∗
C
W ∗

C

)−1
, (A.11)

where AX∗
C

= I − X∗
C(X∗T

C X∗
C)−1X∗T

C .
Finally, the null hypothesis γj = 0 implies that:

r = (0, . . . , 0)T . (A.12)

We obtain

TW = (r − Rδ̂)T

[
R
{

(X∗, W ∗)T (Σ̂−1 ⊗ I)(X∗, W ∗)
}−1

RT

]−1

(r − Rδ̂)

= (W ∗
C γ̂)T AX∗

C
W ∗

C γ̂

= (z∗
C − X∗

C β̂∗
C − e∗

C)T AX∗
C
(z∗

C − X∗
C β̂∗

C − e∗
C),
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where eC = AX∗
C ,W ∗

C
z∗
C is the vector of residuals of the model which contains

both β and γ. Now, given that X∗T
C AX∗

C
= 0 and AX∗

C
AX∗

C ,W ∗
C

= AX∗
C ,W ∗

C
,

TW = z∗T
C AX∗

C
z∗
C − z∗T

C AX∗
C ,W ∗

C
z∗
C . (A.13)

The first argument in the final equation is the residual sum of squares in the model
with only X∗

C and the second is the residual sum of squares in the full model.
Alternative ways of writing Eq. (A.13) are:

TW = trace
{
ET

CEC − E(w)T
CE(w)C

}
(A.14)

=
n∑

i=1

v∑
j=1

{
e2
Cij

− e(w)2Cij

}
. (A.15)

The likelihood ratio test for H0 : γ = 0 is defined as

TLR = n ln
|ET E|

|ET (w)E(w)| . (A.16)

Using the results of Lemma 1 we can write the former expression as

= n ln
|Y T AX,W Y + Y T AXW{WT AXW}−1WT AXY |

|Y T AX,W Y | . (A.17)

If we define G = FY = AXW{WT AXW}−1WT AXY , Eq. (A.17) can be
rewritten as:

= n ln
|E(w)T E(w) + GT G|

|E(w)T E(w)| (A.18)

= n ln |Iv + (E(w)T E(w))−1GT G|. (A.19)

Using the Taylor series expansion of the log of the determinant the former
expression can be written as:

TLR = trace{(ET (w)E(w))−1GT G} + op(1). (A.20)

Now, since Σ̂−1 = CT C = (n − p − 1){ET (w)E(w)}−1,

TLR ≈ trace(CT CGT G) = trace
{
CT C(ET E − E(w)T E(w))

}
. (A.21)

Now, since for 2 generic matrices A and B, (A ⊗ I)vec(B) = vec(BAT ) and
since taking the trace of (DT D) corresponds to computing the sums of squares of
all the elements of the matrix, i.e.

∑
ij d2

ij , the former expression can be written as

TLR = (vecEC)T (vecEC) − (vecEC(w))T (vecEC(w)) + op(1) (A.22)

=
n∑

i=1

v∑
j=1

[
e2
Cij

− e(w)2Cij

]
+ op(1), (A.23)

where vecEC = (C ⊗ I)vecE and vecEC(w) = (C ⊗ I)vecE(w).
The last expression apart from the term op(1) coincides with (A.15).
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Corollary. in the univariate case the likelihood ratio test defined as

TLR = n ln
yT AXy

yT AX,wy

is asymptotically equivalent to the Wald test.

TW =
yT AXy − yT AX,wy

yT AX,wy/(n − p − 1)

Proof. Using Eq. (A.7), the Wald test can be rewritten as

TW =
yT AXy − yT AX,wy

yT AX,wy/(n − p − 1)

=
(yT AXw)2/wT AXw

yT AX,wy/(n − p − 1)
. (A.24)

The likelihood ratio test becomes

TLR = n ln
yT AXy

yT AX,wy

= n ln
yT AXy

yT AXy − (yT AXw)2/(wT AXw)

= n ln
{

1 +
(yT AXw)2

wT AXw yT AXy − (yT AXw)2

}

= n
(yT AXw)2/wT AXw

yT AXy − (yT AXw)2/(wT AXw)
+ op(1)

=
(yT AXw)2/(wT AXw)

yT AX,wy/n
+ op(1). (A.25)

When the sample size n tends to infinity, Eq. (A.25) becomes equivalent to
Eq. (A.24) and this completes the proof.
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