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ABSTRACT

Model-based seasonal adjustment implicitly de®nes a set of weights at the
ends of series as well as in the middle. Until now, with the exception of very
simple models, the weights have been obtained numerically. In this paper
we give the analytical expressions for the weights for both the structural
and the ARIMA framework for a model which contains trend, seasonal
and irregular component. In the ®nal part of the paper we address the
question of robustness of model-based seasonal adjustment. We analyse
practically, using real time series, and theoretically, through the analysis
of the shape of the weights, how the ®tting of di�erent speci®cations for
the non-seasonal part a�ects the extraction of the seasonal component.
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INTRODUCTION

The various procedures of seasonal adjustment can be divided into two major approaches:
empirical and model based (MB). The former is based on repeated application of moving average
®lters (for example, the X-11 ARIMAmethod; see Dagum, 1980). The latter depends on a model
for which the parameters are estimated by maximum likelihood (Bell and Hillmer, 1984). An
overview of the advantages of the MB approach with respect to the use of empirical ®lters is given
byMaravall (1996). AmongMB procedures we can distinguish ARIMA (Hillmer and Tiao, 1982,
henceforth AMB) and structural (Harvey, 1989ÐSTS) methods. In AMB it is assumed that the
series under study can be represented by an ARIMA model with constraints on the parameters.
The (pseudo) spectrum of the estimated ARIMA model is generally split into three parts
corresponding respectively to trend, seasonal, and irregular component. Some constraints are
imposed in order to identify these components. Seasonal adjustment in STS is straightforward,
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because the models are expressed directly as the sum of seasonal and other components. Once
the model parameters have been estimated the seasonal part is removed by smoothing (Harvey
et al., 1997).

Seasonal adjustment can be regarded as a linear transformation of the data. MB seasonal
adjustment implicitly de®nes a set of weights at the ends of the series as well as in the middle. The
weights can be calculated by running the Kalman ®lter and smoother using a time series made up
of zeros except at the point for which the weights are required, where the observation is set to
one. Alternatively, the weights can be obtained numerically through the use of the Wiener±
Kolmogorov ®lter (Box et al., 1978; Maravall, 1994; Bianchi, 1996). In this paper, we obtain the
analytical expressions for the weights for both the structural and the ARIMA framework for a
model which contains trend, seasonal, and irregular component. These expressions are important
because in this way (1) we can gain further insights into the di�erences and similarities between
AMB and STS and (2) we can analyse the sensitivity of parameters to changes in the decay of the
weight pattern. We also state the relationships between the parameters of the STS and those of
AMB.

Using the time series of UK personal disposable income and non-durable consumption and
the theoretical results found, we analyse the magnitude of the di�erences between AMB and STS.
We also address the question of robustness of STS seasonal adjustment. More precisely, we
analyse practically, using real time series, and theoretically, through the analysis of the shape of
the weights, how the ®tting of di�erent speci®cations for the non-seasonal part a�ects the
extraction of the seasonal component.

THEORETICAL COMPARISON BETWEEN STS AND AMB MODEL-BASED
SEASONAL ADJUSTMENT METHODS

In all model-based seasonal adjustment procedures it is assumed that the observed time series (yt)
can be expressed as the sum of several orthogonal components representing respectively the
trend, the seasonality, and the irregular white-noise term. For simplicity we consider a seasonal
period s� 2. A structural time-series model with trend (mt), seasonal (gt), and irregular (et), is
de®ned as

yt � mt � gt � et �
Zt

1 ÿ L
� ot

1 � L
� et �1�

where Zt ,ot and et are three mutually and serially uncorrelated white-noise terms with zero means
and variances equal to s2Z, s2o, s2e respectively. While the STS approach starts by directly
specifying the components and uses the Kalman ®lter for estimation, the AMB ®ts a model for the
overall series and uses the Wiener±Kolmogorov ®lter. To identify the unobserved components, in
AMB the stability of the trend and of the seasonal component is maximized creating arti®cial
unit roots in the corresponding pseudospectra. In the standard terminology it is said that trend
and seasonal are made canonical (Tiao and Hillmer, 1978). For example, the reduced form of
model (1) can be written as follows:

�1 ÿ L��1 � L�yt � �1 � y1L � y2L
2�at �2�
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where at�WN(0,s2). The AMB approach decomposes this ARIMA speci®cation into trend (pt)
seasonal (st) and irregular (dt) in the following way:

yt � pt � st � dt �
1 � L

1 ÿ L
bt �

1 ÿ L

1 � L
ct � dt �3�

where bt, ct, and dt are three mutually and serially uncorrelated white-noise terms with zero mean
and variance respectively equal to s2b, s

2
c , s

2
d . The models for trend (pt) and seasonal (st) contain

in the numerator an arti®cial unit root in order to ensure that the variance of the irregular
component is maximized.

By equating the autocovariances of the stationary forms of models (1) and (3) we obtain the
relationships between the parameters which represent the variance of the trend and the seasonal:

s2Z � 4s2b s2o � 4s2c �4�

For the irregular term, we have:

s2e � s2d ÿ s2b ÿ s2c s2d � s2e �
s2Z � s2o

4
�5�

Equation (5) shows that the variance of the structural irregular is always smaller than the
canonical one. From equation (4) it is interesting to note that the variance of the structural trend
(seasonal) is equal to four times the corresponding canonical one and these relationships do not
involve other hyperparameters. This implies that the magnitude of the di�erence in the two
seasonal adjusted (detrended) series is an increasing function of the variance of the corresponding
unobserved component.

If in models (1) and (3) we consider separately the seasonal part from the non-seasonal one, we
have the following equations:

yt �
�1 � yL�
1 ÿ L

xt �
ot

1 � L
STS �6�

yt �
�1 � bL�
1 ÿ L

mt �
1 ÿ L

1 � L
ct AMB �7�

In both cases the non-seasonal part is an ARIMA (0,1,1) process. Note that this is exactly true
for any seasonal period. It is known (for example, Harvey, 1989, p. 68) that the parameter y in
equation (6) relates to the signal-to-noise ratio q � s2Z=s

2
e as:

y � �
����������������
q2 � 4q

p
ÿ q ÿ 2�=2 �8�

It is interesting therefore to analyse how the non-seasonal parameter b which appears in the
AMB approach is linked to y in order to have a better understanding of the di�erences and
similarities of the two approaches. Equating the autocovariances of the stationary form of model
(1) with those of model (7) it can be shown, after tedious but simple algebra, that:

b � �
����������������
�q2 � 4 �q

p
ÿ �q ÿ 2�=2 �9�
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where �q � 4s2Z=�4s2e � s2o). Comparing equation (8) with equation (9) we can immediately see
that the parameter b can be interpreted in the same way as y provided that we give a di�erent
de®nition to the signal-to-noise ratio q. Equation (9) shows that if the seasonal movements are
slowly changing (i:e: s2o ! 0� then the two approaches tend to produce the same result. For a
time series with a high variability in the seasonal component the AMB approach arti®cially
transfers the seasonal movements in the non-seasonal part of the model. Usually, however, the
variability in the seasonal component is low with respect to that of the trend and of the irregular,
consequently these two approaches are not likely to give very di�erent results.

Given these di�erences, it is interesting to analyse the shape of the weights of these two
approaches (assuming a doubly in®nite sample) in order to understand what determines their rate
of decay and what are the main di�erences.
In the Appendix we prove that STS in order to obtain an estimate of the trend at time t (mt j1)

uses a weighted arithmetic mean of the observations in which the weight (W ) applied to yt+k

(lag k) satis®es the following equation:

Wk�mt j1� �
lk1�l1 � 1��l2 ÿ 1� � lk2�1 ÿ l1��l2 � 1�
�1 ÿ l1l2��1 ÿ l1��1 ÿ l2��l2 ÿ l1�

s2Z=s
2

k � 0; + 1; + 2 . . . �10�

where l1 and l2 are linked to the parameters of the reduced form (model (2)) by the following
relationships:

l1 � l2 � ÿ y1 �11�
l1l2 � y2 �12�

Equating the autocovariances of model (1) with those of the reduced form (model (2)), it can
be shown that y25 0 so that l1 and l2 must have opposite sign. Without loss of generality we can
assume l15 0 and l24 0. For the seasonal component (gt) we have:

Wk�gt j1� �
lk1�1 ÿ l1��l2 � 1� � lk2�1 � l1��l2 ÿ 1�
�1 ÿ l1l2��1 � l1��1 � l2��l2 ÿ l1�

s2o=s
2

k � 0; + 1; + 2 . . . �13�

In the AMB approach for canonical trend we obtain:

Wk� pt j1� �
lkÿ11 �l1 � 1�3�l2 ÿ 1� � lkÿ12 �1 � l2�3�1 ÿ l1�

�1 ÿ l1l2��1 ÿ l1��1 ÿ l2��l2 ÿ l1�
s2b=s

2
k � + 1; + 2 . . . �14�

The central weight (k� 0) for canonical trend is given by:

W0� pt j1� �
2�3 � l1 � l2 ÿ l1l2�
�1 ÿ l1l2��1 ÿ l1��1 ÿ l2�

s2b=s
2 �15�

The formula for the canonical seasonal is the following:

Wk�st j1� �
lkÿ11 �l1 ÿ 1�3�l2 � 1� ÿ lkÿ12 �1 � l1��l2 ÿ 1�3

�1 ÿ l1l2��1 � l1��1 � l2��l2 ÿ l1�
s2c=s

2
k � + 1; + 2 . . . �16�
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The central weight (k� 0) for the canonical seasonal is given by:

W0�st j1� �
2�3 ÿ l1 ÿ l2 ÿ l1l2�
�1 ÿ l1l2��1 � l1��1 � l2�

s2c=s
2

For the irregular in both approaches we have:

lkÿ11 �1 ÿ l21� ÿ lkÿ12 �1 ÿ l22�
�1 ÿ l1l2��l2 ÿ l1�

s2
*
s2

for k � + 1; + 2 . . .

and

2

�1 ÿ l1l2�
s2
*
s2

for k � 0 �17�

where s2
*
is equal to s2e or s

2
d according to whether we are using the STS or the AMB method.

Obtaining of the above formulae enables us to state the following propositions which we prove
in the Appendix:

Proposition 1: if s2Z! 0, (s2b ! 0), then l1! y2 and l2! 1.
Proposition 2: if s2o ! 0 (s2c ! 0), then l1! 7 1 and l2! 7 y2 .
Proposition 3: central weight for trend and seasonal is greater in STS than in AMB.
Proposition 4: at lag 1 the weight for trend is greater in STS than in AMB if l24 j l1 j .
Proposition 5: at lag 1 in both approaches the weight for trend is always positive.
Proposition 6: at lag 1 the weight for irregular is negative if s2Z 4 s2o�s2b 4 s2c ).
Proposition 7: if s2e ! 0, then

l1! ÿy1 ! ÿ
�����
s2Z

q
ÿ ������

s2o
p

�����
s2Z

q
� ������

s2o
p

and l2! y2! 0. Structural weights for trend and seasonal therefore become:

Wk�mt j1� �
lkÿ11 �1 � l1�
�1 ÿ l1�

s2Z
s2

k � + 1; + 2 . . . �18�

Wk�gt j1� � ÿ
lkÿ11 �1 ÿ l1�
�1 � l1�

s2o
s2

k � + 1; + 2 . . . �19�

In the last case the variance of the reduced form s2 is equal to
�����
s2Z

q
�

������
s2o

q� �2
. Finally, the

central weights (k� 0) become:

W0�mt j1� �
2

1 ÿ l1

s2Z
s2

W0�gt j1� �
2

1 � l1

s2o
s2

Proposition 1 a�rms that l2 and l1 are linked to the stability of the trend and the seasonal
component respectively. If the movements in the trend (seasonal) tend to become deterministic
l2! 1(l1! 7 1).
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In AMB when the trend and seasonal are made canonical some variability of these compo-
nents is transferred to the irregular, therefore (as Proposition 3 states) the central weight given to
the trend and seasonal is always less in AMB than in STS. Proposition 4 a�rms that at lag 1 the
weights given to the trend component in STS are greater than in AMB if s2Z 5 s2o�s2b 5 s2c ).
Usually the movements in the trend are larger than those in the seasonal, therefore in practice at
lag 1, the canonical trend uses a greater weight than the structural trend. This re¯ects the
constraint of smoothness imposed on trend by the AMB approach.

Proposition 5 is of crucial importance because it states that even if the variance of the trend
movements is much greater than that of the other components the extracted trend cannot
¯uctuate up and down.

Proposition 6 states that when the movements in the trend are greater than those in the
seasonal, the irregular has the typical white-noise behaviour. In contrast to what happens for
the trend, however, the weights at lag 1 for the irregular do not have a speci®c constraint. This
implies that the extracted irregular component can deviate signi®cantly from the pure white
noise. It is known that in unobserved component models the use of MMSE estimators implies
that the autocovariance-generating function of the irregular component is equal to the inverse
of that of the original model. This also explains why the formulae for the weights for the
irregular are the same in both STS and AMB. The ¯exibility in the pattern of the weights for
the irregular component is very important because it implies that if some unobserved compo-
nents are mistakenly not inserted in the model the e�ect of these neglected compo-
nents is likely to be included in the irregular term. In the fourth section, when we examine
the robustness of MB seasonal adjustment, we will be able to give more support to this
intuition.

It is easy to see that in both approaches the rate of decay of the weights, when all three
parameters are greater than zero, is determined by a di�erence equation governed by the two
parameters l1 and l2 . If there are just two hyperparameters greater than zero then (as equations
(18) and (19) show) the rate of decay is a function of their ratio.

After examining the properties of the weight functions for the unobserved components, it is
interesting to study them graphically. We consider two situations of low and high variability in
the trend and seasonal movements. In Figure 1 we can visually inspect the weights used to extract
trend, seasonal, and irregular when s2Z=s

2
e � 1 and s2o=s

2
e � 0:01. Figure 1 shows (con®rming

what has been proved in Propositions 3 and 4) that the shape of the weights of structural trend is
larger but narrower with respect to canonical trend. In the seasonal component there does not
seem to be an appreciable di�erence between the two approaches. It is interesting to know what
happens when we increase the variability of the trend and of the seasonal movements. In Figure 2
we analyse the shape of the weights when s2Z=s

2
e � 10 and s2o=s

2
e � 1. This ®gure shows that in

this last case the two trends will show marked di�erences. More precisely the canonical trend will
be much smoother than the STS one. In the seasonal (apart from the height of the central peak,
which, as stated in Proposition 4, is higher in STS) even in the presence of large seasonal
movements there does not seem to be an appreciable di�erence between AMB and STS. Finally,
it is evident that in this case the central weight for the irregular is much greater in the canonical
approach. This re¯ects the constraint of the maximization of the variance of the irregular
component imposed by AMB.

In conclusion, these plots show that the main di�erences between STS and AMB refer to the
trend and if the purpose of the analysis is seasonal adjustment, the two approaches are likely to
produce very similar results.

# 1998 John Wiley & Sons, Ltd. J. Forecast., Vol. 17, 19±34 (1998)

24 Marco Riani



Figure 1. Comparison of weights for STS (top) and AMB (bottom) (slowly changing trend and seasonal)

Figure 2. Comparison of weights for STS (top) and AMB (bottom) (unstable trend and seasonal)
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PRACTICAL COMPARISON BETWEEN AMB AND STS

In the former section we have proved theoretically that unless the variability of the seasonal part
is high with respect to the non-seasonal one, AMB and STS produce very similar seasonally
adjusted series. In this section we analyse practically through the use of real time series how
large are the di�erences between these two approaches. AMB is implemented in the program of
Maravall and Gomez. This program is made up of two routines TRAMO (Gomez and Maravall,
1994) and SEATS (Maravall and Gomez, 1994). TRAMO initially ``linearizes'' the series,
removing outliers and structural breaks and creates the input series for SEATS which performs
the AMB seasonal adjustment. ARIMA models are not robust to the presence of atypical
observations therefore a preliminary linearization is necessary. The class of structural models, in
contrast, is limited with respect to the ARIMA ones, but it is more robust to the presence of
outliers because of the constraints that structural models impose at the outset on the range of
admissibility of the parameters.

The series we take into consideration are those of quarterly UK personal disposable income
(PDI) and non-durable consumption (CONS). The period we consider goes from the ®rst quarter
of 1955 to the second quarter of 1993. For UK PDI, TRAMO considers observations referred to
the ®rst quarter of 1966 and to the last quarter of 1979 as outliers and removes them. In addition,
TRAMO detects a structural break from the second quarter of 1972 to the third quarter of 1976.
For concerns non-durable consumption, TRAMO linearizes this series in the ®rst quarter of 1968
and from the ®rst quarter of 1973 to the fourth quarter of 1983.

On the two linearized series SEATS estimates the following ARIMA models:

DD4ln yt � �1 ÿ 0:17L��1 ÿ 0:64L4�at PDI

DD4ln yt � �1 ÿ 0:39L4�at CONS

STS seasonal adjustment is implemented in BSTAMP. This program is a batch version of
STAMP (Koopman et al., 1995) especially directed towards seasonal adjustment. It can cope
with trading days, transformations, and Easter e�ects. It automatically removes outliers only if
the corresponding residuals are greater than a certain threshold. This routine uses as default the
basic structural model1 with trigonometric seasonality. In the former series we could have easily
removed the outliers but we preferred to estimate the model without preliminary modi®cations of
the data in order to analyse the sensitivity of the results to the presence of these atypical
observations. Our suggestion is that a preliminary correction of the series is unnecessary unless
there are observations which are quite extreme.
BSTAMP gave the following estimates:

s2o
s2Z
� 0:0093

s2z
s2Z
� 0

s2e
s2Z
� 0:1872 PDI

s2o
s2Z
� 0:0180

s2z
s2Z
� 0:0339

s2e
s2Z
� 0:0686 CONS

�20�

1 The basic structural model (BSM) is de®ned by a local linear trend in which the variance of the level and the slope are
denoted by s2Z and s2z , a seasonal component and an irregular term (Harvey, 1989, p. 47).
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The variability in the level of the trend seems to dominate that of the other components. In
addition, the variability in seasonal movements seems to be more marked in the UK series of
consumption than in that of PDI. From an examination of Figures 3 and 4 which show the
seasonally adjusted series obtained by these two approaches, it appears that the output of
BSTAMP is hardly distinguishable from that of SEATS. There is a marked di�erence only in the
periods in which there has been the linearization of TRAMO. This suggests that if the focus of
the analysis is on seasonal adjustment, the di�erences between these two approaches are likely to
be small for many real data sets.

ANALYSIS OF ROBUSTNESS OF MODEL BASED SEASONAL ADJUSTMENT

In this section we address the problem of robustness of MB seasonal adjustment. For this
purpose we use the UK quarterly time series of PDI of the former section. After the introduction
of a structural cycle (see Harvey, 1989, p. 39) with variance s2k the estimated hyperparameters
become:

s2o
s2k
� 0:0195

s2Z
s2k
� 0:5915

s2z
s2k
� 0

s2e
s2k
� 0:8492 �21�

If we compare these hyperparameters with those of the model without a cycle (model (20)) we
can see that the introduction of a cycle seems to a�ect considerably the ratios among some
hyperparameters. If we inspect graphically the series with the estimated trend in a basic structural

Figure 3. UK seasonal adjusted series of personal disposable income using TRAMO-SEATS and BSTAMP
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model (Figure 5) and the same series with the trend once a structural cycle has been included
in the model (Figure 6), we can see a signi®cant di�erence in the estimated trend. In other words,
the introduction of a stochastic cycle results in a smooth trend. Running the Kalman ®lter on
a time series made up of zeros and ones and using the ratio of the hyperparameters found
earlier we can easily compute the weights used to estimate the underlying components of the time
series.

Figure 7 reports the weights used to extract the trend and the irregular component. The left
part refers to a model without a cycle, the right part to a speci®cation with a cycle. While the two
graphs on top refer to the trend, those at the bottom concern the irregular. When no cycle is
present the weights for trend are characterized by a sharp central peak (time t) and a mono-
tonically decreasing pattern. When a structural cycle is added, the height of the peak consistently
reduces and we have two local maxima corresponding to times t+ p/2 where p is the period of the
cycle (this guarantees a smooth trend). Conversely, the weights for cycle, not reported here, show
two local minima at times t+ p/2. As regards the irregular, the shape of the weights does not
appreciably change after the introduction of a cycle but the height of the central peak increases in
a model with cycle. In this last case the trend is smooth so if an irregular is present, it will absorb
some of the variability that was formerly in the trend. It is worth noting (as shown theoretically in
the previous section) that, irrespective of the presence of a cyclical component, the weights for
trend are always positive at lag 1.

As emerges from the examination of Figure 8, which reports the seasonal component estimated
in a model without a cycle (top) and with a cycle (bottom), we can clearly see that the intro-
duction of the cyclical component does not seem to a�ect the seasonal component (the maximum

Figure 4. UK seasonal adjusted series of non-durable consumption using TRAMO-SEATS and BSTAMP
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Figure 5. Estimated trend in UK PDI using a BSM

Figure 6. Estimated trend in UK PDI using a BSM � cycle
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absolute di�erence between the two seasonal components is 0.002). This result is very important
from a practical point of view because it says that if the purpose is seasonal adjustment the
estimate of the seasonal component is practically una�ected by the introduction (omission) of a
cycle.

Remark: Another question of interest is the following. How is the estimated trend a�ected by a
model which does not consider the seasonal component? From the analysis we conducted
(not reported here for lack of space) on several seasonal time series it emerged that in a model
trend plus irregular the seasonal component is entirely included in the second component. The
¯exibility in the weights of the irregular term compared to the rigidity of the weights of trend
generally guarantees that the omitted part of the model is included in et .

CONCLUSIONS

In this paper we have analysed the di�erences and similarities of the two leading approaches of
seasonal adjustment: the one which uses ARIMA models and the second which starts from
structural models. We have shown theoretically that unless the variation in the seasonal
component is very large with respect to the other parts of the model, these two approaches give
very similar results. This part is illustrated in the third section, using real time series which display
a di�erent degree of variation in the seasonal movements.

Figure 7. Weights used to estimate the trend and the irregular in UK PDI. In the two graphs at the top we
can ®nd the weights for trend, in those at the bottom the weights for the irregular component. The graphs
on the left refer to a BSM, those on the right to a BSM � cycle
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In the fourth section we have seen that seasonal adjustment in a structural model is relatively
robust with regard to model speci®cation. For example, the omission (inclusion) of a stochastic
cycle has little e�ect on the estimate of the seasonal component.

APPENDIX

Proof of equations (10)±(16)
We will prove only equation (10): the other expressions follow similar arguments. Using
the Wiener±Kolmogorov ®lter the minimum mean square error estimator of trend (mt j1) in
equation (1) is given by the following equation (Bell, 1984):

mt j1 �
s2Z

�1 ÿ L��1 ÿ F�
s2Z

�1 ÿ L��1 ÿ F� �
s2o

�1 � L��1 � F� � s2e

yt

mt j1 �
�1 � L��1 � F�

s2�1 � y1L � y2L
2��1 � y1F � y2F

2� s
2
Zyt

� �1 � L��1 � F�
s2�1 ÿ l1L��1 ÿ l2F��1 ÿ l1L��1 ÿ l1F�

s2Zyt

�A1�

Figure 8. Seasonal component of UK PDI from a BSM (top) and a BSM � cycle (bottom)
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where l1 and l2 are de®ned as in equations (11) and (12) and s2 is the variance of the reduced-
form model. Bringing to the numerator the denominator of equation (22) we have:

mt j1 �
X1
r�0
�l1L�r

X1
r�0
�l1F�r

X1
r�0
�l2L�r

X1
r�0
�l2F�r�1 � L��1 � F��s2Z=s2�yt

mt j1 �
�
�1 � l1l2� � �l1 � l2��L � F� � ��l21 � l22� � �1 ÿ l1l2�l1l2��L2 � F

2� � � � �

� ��lk1 � lk2� � �1 ÿ l1l2�
Xkÿ1
l�1

ll1l
kÿl
2 ��Lk � F

k� � � � �
�

� �1 � L��1 � F��s2Z=s2�yt=��1 ÿ l1l2��1 ÿ l21��1 ÿ l22��

After some manipulations it is found that the coe�cient of Lk (Fk) (k� 0,1, . . .) satis®es the
following equation:

Wk�mt j1� �
�1 � l1��1 � l2��lk1 � lk2 ÿ

Xk
l�1

ll1l
kÿl�1
2 �

Xkÿ1
l�0

ll1l
kÿ1ÿl
2 �

�1 ÿ l1l2��1 ÿ l21��1 ÿ l22�
�s2Z=s2�

From this expression after some simpli®cations and cancellations it is easy to obtain model (10).

Proof of Propositions 1, 2 and 7
Equating the autocovariances of model (1) with those of the reduced form (model (2)) we have
the following system of equations:

a�1 � y21 � y22� � a �A2�
ay1�1 � y2� � b �A3�

ay2 � ÿ 1 �A4�

where a� 2qZ � 2qo � 2, b� qZ7 qo , a � s2=s2e ; qZ � s2Z=s
2
e and qw � s2o=s

2
e . Solving this

system of equations y2 is found as the solution of the following fourth-degree equation:

y42 � �2 � a�y32 � �2 � b
2 � 2a�y22 � �2 � a�y2 � 1 � 0

which gives:

y2 �
���
2
p ��������������������������������������������������������������������������������������������

ÿ�a � 2�
��������������������������������������
a2 ÿ 4a ÿ 4b2 � 4

p
� a2 ÿ 2b2 ÿ 4

q
�

��������������������������������������
a2 ÿ 4a ÿ 4b2 � 4

p
ÿ a ÿ 2

4
�A5�

Parameter y1 is found by solving:

y1 �
b

�1 � y2�a
�A6�
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From equations (26) and (27) it is easy to see that if qZ! 0 then

y2!
�����������������������
qo�qo � 4�p ÿ qo ÿ 2

2

y1!
qo ÿ

�����������������������
qo�qo � 4�p
2

Solving equations (11) and (12) after some algebra the result follows. The proofs of Proposition 2
and 7 follow similar arguments and are omitted.

Proof of Propositions 3±6

For example, as concerns Proposition 3 for the part which refers to the trend, from equation (10)
when k� 0 and equation (15) we have:

�l1 � 1��l2 ÿ 1� � �1 ÿ l1��l2 � 1�
l2 ÿ l1

s2Z42�3 � l1 � l2 ÿ l1l2�s2b

Using equation (4) after some manipulations we obtain:

4s2Z 4 �3 � l1 � l2 ÿ l1l2�s2Z �A7�

Remembering that (ÿ15 l15 0) and (05 l25 1) the result follows easily. The other proposi-
tions are proved similarly.
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