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Abstract The twelve results from the 1988 radio carbon
dating of the Shroud of Turin show surprising heterogeneity.
We try to explain this lack of homogeneity by regression on
spatial coordinates. However, although the locations of the
samples sent to the three laboratories involved are known,
the locations of the 12 subsamples within these samples are
not. We consider all 387,072 plausible spatial allocations
and analyse the resulting distributions of statistics. Plots of
robust regression residuals from the forward search indicate
that some sets of allocations are implausible. We establish
the existence of a trend in the results and suggest how better
experimental design would have enabled stronger conclu-
sions to have been drawn from this multi-centre experiment.
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1 Introduction

The results of a radiocarbon dating of the Turin Shroud (TS)
were published by Damon et al. (1989). Four samples of fab-
ric were cut from a corner of the cloth and sent to three lab-
oratories, the University of Arizona receiving two samples.
Statistical analysis of the twelve resulting readings of radio-
carbon age shows a surprising lack of homogeneity which
was not present in control readings from three other fabrics
chosen to span possible ages and sources for the TS. We use
regression on spatial coordinates to model this lack of ho-
mogeneity. However, the spatial coordinates of the twelve
samples are not precisely known. We consider all 387,072
plausible spatial allocations and analyse the resulting distri-
butions of statistics, using simulation envelopes to calibrate
this large number of tests on the same data. Plots of robust
regression residuals from the forward search indicate that
some sets of allocations of the readings from Arizona are
implausible. The remaining allocations all point to the same
inferential conclusion of a trend along the sample.

Undisputed historical records of the existence of the TS
go back to AD 1357. The cloth shows front and back images
of a thorn-crowned man. The images are much clearer in a
black-and-white photographic negative than in their natural
state, as was discovered in 1898 by the amateur photogra-
pher Secondo Pia. Ballabio (2006) surveys the extensive lit-
erature on scientific aspects of the date of the shroud. More
recently, Fanti et al. (2010) contend that the formation mech-
anism of the body images has not yet been scientifically ex-
plained; only the external layer of the topmost linen fibres
is coloured. However, the results of the 1988 radiocarbon
dating (Damon et al. 1989) stated that the linen fabric dates
from between 1260 and 1390 AD, with a confidence level of
95 %.

After publication of this result, some speculated that the
sample had been contaminated due to the fire of 1532 which
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seriously damaged the TS, or to the sweat of hands impreg-
nating the linen during exhibitions, others that the date was
not correct due to the presence of medieval mending and so
forth. The purpose of our article is not to discuss the reliabil-
ity of the various assumptions made, but to show how robust
methods of statistical analysis, in particular the combination
of regression analysis and the forward search (Atkinson and
Riani 2000; Atkinson et al. 2010) combined with computer
power and a liberal use of graphics, can help to shed light on
results that are a source of scientific controversy.

The Turin Shroud (TS) is 4.4 m long and 1.1 m wide. The
samples for radio carbon dating were taken from a thin strip
of material cut from one corner of the TS. The strip was
divided into four parts; the three larger parts were sent to
laboratories in Arizona, Oxford and Zurich and the fourth,
smaller, part was also sent to Arizona (see Fig. 1). These
samples were divided into a total of 12 sub-samples for
which datings were made, together with standard errors for
each subsample based on a number of individual determina-
tions which are not available to us.

The longitudinal locations of the four samples in the strip
are known. On the assumption that the four readings from
Arizona all came from the large sample (A1 in Fig. 1),
Walsh (1999) showed evidence for a regression of age on the
(known) centre points of the three pieces of fabric given to
the three laboratories. This analysis ignored both the quoted
standard deviations of the measurements and the further

Fig. 1 Diagram showing the piece removed from the TS and how it
was partitioned. T: trimmed strip. R: retained part called “Riserva”
(initially including also A2). O, Z, A1, A2: subsamples given to Ox-
ford, Zurich, and Arizona (two parts) respectively

source of heterogeneity due to the division of the samples
into subsamples, which also introduces a second spatial vari-
able into the regression, the values of both variables depend-
ing on how the division into subsamples is assumed to have
been made. Ballabio (2006) attempted an analysis based on
a series of assumptions about the division of the samples,
but was defeated by the number of cases to be considered.

We summarise the evidence for heterogeneity in Sect. 2.
A full comparison of unweighted analyses with those
weighted by the reported accuracies of the three laborato-
ries is given in the Appendix. The possible spatial layouts
of the subsamples are described in Sect. 3. We proceed in
Sect. 4 by calculating the 387,072 possible bivariate regres-
sions and looking at distributions of the resulting t statistics
for the two regression variables. Only that for length along
the strip is significant, but the histogram of values exhibits
a surprising bimodal distribution. In Sect. 5 we use graphi-
cal methods associated with the forward search to show that
the subsamples from Arizona must all have come from the
single larger sample (A1 of Fig. 1); the contrary assump-
tion leads to the generation of gross regression outliers. We
conclude in Sect. 6 with a brief discussion of statistical as-
pects of radiocarbon dating and of how the application of
statistical principles would have produced a design leading
to sharper conclusions.

2 Heterogeneity

Table 1, taken from Table 1 of Damon et al. (1989), gives
the estimated radiocarbon age, in years BP, that is before
the present which is conventionally taken as 1950, of the 12
samples of the TS. Also given in the table are the standard
errors of the individual measurements. These latter are po-
tentially misleading (at least, as we explain in the Appendix,
they initially misled us).

Relative to the given standard deviations the continuous
observations are all far from zero and do not have a wide
range. It is then natural to consider a normal theory linear

Table 1 Estimated radiocarbon ages of the individual samples (years
before 1950) with calculated standard deviations. Those for Arizona
exclude one source of error (see Appendix). The standard deviations

for the mean age at each laboratory come from Table 2 of Damon et
al. (1989) and can be compared with those calculated from the vij us-
ing (2)

Sites Individual observations Weighted
means

s.d. (mean)
from (2)

Arizona y 591 690 606 701 646

v ±30 ±35 ±41 ±33 ±31 ±17

Oxford y 795 730 745 750

v ±65 ±45 ±55 ±30 ±32

Zurich y 733 722 635 639 679 676

v ±61 ±56 ±57 ±45 ±51 ±24 ±24
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model. If we ignore any spatial factors, a simple general
model for observation j at site i is

yij = μi + σvij εij (i = 1,2,3; j = 1, . . . , ni), (1)

where the errors εij ∼ N (0,1). We briefly discuss more
complicated models in Sect. 6. Our central concern is the
structure of the μi , at this point whether they are all equal.
However, to test this hypothesis we need to establish the er-
ror structure. In the Appendix we argue that an unweighted
analysis is appropriate, that is that all vij = 1.

A major part of the argument is that, in addition to the
TS, each laboratory dated three controls: linen from a Nu-
bian tomb with Islamic patterns and Christian ink inscrip-
tion, stylistically dated to the eleventh to twelfth centuries
AD; an Egyptian mummy from Thebes, with a previously
estimated radiocarbon age around 2010 BP and threads from
a cope from Var, France, historically dated to 1290–1310
AD. None of the datings of these samples was controversial.
The unweighted analysis does not reveal any inhomogene-
ity of either mean or variance of the three fabrics the prove-
nance of which is not in doubt. However, as the results of
Table 2 show, weighted analyses give significant differences
between some means and variances for the three laborato-
ries.

It might be expected, despite the most stringent cali-
brations, that there would be significant laboratory effects.
However, the unweighted analysis provides no evidence of
heterogeneity in the means of the three control samples and
so no evidence of systematic differences between laborato-
ries. The plots of the means for all four fabrics in Fig. 2 of
Damon et al. (1989) reinforce this point; heterogeneity, or a
laboratory effect, is only evident for the TS.

Christen (1994) used these data as an example of Bayesian
outlier detection with a mean shift outlier model (Abraham
and Box 1978) in which the null model was that the data
were a homogeneous sample from a single normal popula-
tion. He found that the two extreme observations, 591 and
795 were indicated as outlying. When these two observa-
tions were removed, the data appeared homogeneous, with a
posterior distribution of age that agreed with the conclusion
of Damon et al. (1989). We have already mentioned the re-
gression analysis of Walsh (1999) that effectively “binned”
the data and assumed that all Arizona samples came from
A1. We now use a spatial analysis to try to discover the
source of the egregious heterogeneity in the readings on
the TS.

3 Spatial layout

We have appreciable information about the spatial layout of
the samples sent to the three sites, although the detailed lay-
out of the subsamples is uncertain. Walsh (1999) argues con-
vincingly that the strip of TS linen fabric used for dating

seems to have slightly different sizes from those reported
by Damon et al. (1989). From this strip an approximately
5 mm portion was trimmed, thus removing the stitching and
remnants. This process resulted in a piece of fabric that mea-
sured 81 mm × 16 mm.

This piece of TS fabric was then divided into two parts;
one, called “Riserva”, remained in Turin for future analy-
ses (see Fig. 1) and the other was divided into three parts
as shown. Since A1 was smaller than the other two pieces,
a section of the “Riserva” was cut and these two pieces of
fabric were sent to Arizona. Zurich received the sample next
to A1 and Oxford, as shown in Fig. 1, the material between
Zurich and A2.

We know from Damon et al. (1989) that four different
pieces were dated by Arizona. The possible configurations
are therefore those shown in Fig. 2. For Zurich, from pho-
tographs published on the internet (but now deleted) it is
known that, after a first division, the first piece was di-
vided into three subsamples while from the second piece two
subsamples resulted; the possible configurations are those
shown in Fig. 3. Oxford instead divided its piece of TS fab-
ric into only three parts with the possible configurations as
shown in Fig. 4.

Obviously Figs. 2–4 do not represent all the possible
subsample configurations because, for example, triangular
shapes are not considered. Those considered seem the most
significant and the addition of other possibilities does not
appreciably change the positions of the centres of gravity of
the subsamples which we used as references for our calcu-
lations.

4 Two variable regression

To try to detect any trend in the age of the material we fit
a linear regression model in x1 (longitudinal) and x2 (trans-
verse) distances. Since the sample is long (in x1) and thin
(in x2) we expect that there is more likely to be an effect, if
any, in x1 and this is what we find.

The analysis is not standard. There are 387,072 possible
cases to analyse. We can permute the values of x1 and x2

and calculate this number of analyses. The question is how
to interpret this quantity of numbers.

The left-hand panel of Fig. 5 plots, as a continuous line,
the ordered significance level of the t-test for x2 in the model
with both variables. In the absence of any effect of x2 we
would expect these ordered values to fall close to a straight
line. Indeed, this curve, coming from all 387,072 possible
configurations of x1 and x2, is a relatively straight diagonal
line. To calibrate it we generated 100 samples of 12 observa-
tions from a standard normal distribution and analysed each
set for the 387,072 configurations. For each sample the p

values were ordered. The dotted lines in the figure show the
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Fig. 2 Spatial arrangements
investigated for the Arizona
sample. The image on top
assumes that Arizona dated both
pieces (A1 and A2), with one
reading taken on A2. The image
at the bottom assumes that
Arizona only dated piece A1.
Total number of cases
considered is 168 = 96 + 72

Fig. 3 Spatial arrangements
investigated for the Zurich
sample. It is known that this
sample was divided into the two
parts shown in the top panel.
The two lower panels show
possible further subdivisions.
Total number of cases
considered is 96 = 24 × 4

Fig. 4 Spatial arrangements
investigated for the Oxford
sample. The total number of
cases considered is 24 = 3! × 4
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Fig. 5 Two variable regression. Significance levels of t -statistic from 387,072 possible configurations (continuous line) and envelopes from 100
simulations of each configuration. Left-hand panel x2, right-hand panel x1

5 %, 50 % and 95 % points of this empirical distribution.
The observed values lie close to the 50 % point throughout.
There is clearly no evidence of an effect of x2.

The right-hand panel repeats the procedure for x1 in the
model for both variables. Now the values lie outside the
lower 5 % point for virtually all configurations. The non-
smooth envelopes reflect the discrete nature of the config-
urations, some of which include leverage points. It is clear
that there is a significant effect of x1, although the shape of
the curve generated by the data merits investigation.

Histograms of the statistics help. The top panel of Fig. 6
shows the distribution of the t-statistic for x2. This has a t

like shape centred around 0.5. The bottom panel of Fig. 6,
the t-statistic for x1, is however quite different, showing two
peaks. The larger peak is centred around −2.8 whereas the
thinner peak is centred around −0.6. It is also interesting to
notice that for each of the 387,072 configurations we obtain
a negative value of the t-statistic for the longitudinal coordi-
nate.

Although our procedure involves permutations of data,
these analyses are not those associated with permutation
tests. In a permutation test (for example, Box et al. 1978,
Sect. 4.1) the values of x1 and x2 are kept fixed, the observa-
tions y being permuted over the design points and a statistic
calculated for each permutation. The position of the value
of the statistic corresponding to the configuration of the ob-
servations in the ordered set of statistics determines signifi-
cance. In our example this procedure is the same as keeping
the values of y fixed and permuting the pairs of values of
x1 and x2. But we have some additional partial information,

Fig. 6 Two variable regression. Histograms of values of t -statistics
from 387,072 possible configurations. Upper panel x2, lower panel x1

knowing which values of y go with each site. The permuta-
tion is of known groups of y’s over sets of x configurations.

5 Interesting configurations

As we have shown that x2 is not significant, we continue
our analysis with a focus on x1. In particular, we want to
discover what feature of the data leads to the bimodal distri-
bution in Fig. 6.
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Fig. 7 Distribution of t -statistics for each longitudinal configuration
for Arizona. The first 52 configurations are associated with the as-
sumption that Arizona dated both A1 and A2. The remaining 31 con-
figurations are associated with the assumption that Arizona only dated
A1. The first 24 boxplots (to the left of the line labelled 24.5) come

from the layout (a) or (b) of Fig. 2. Boxplots 25–28 and 29–52 are
associated respectively with (c) and (d). Finally, boxplots 53–58, 59
and 60–83 are associated respectively with (e), (f) and (g). The la-
bels on top of the first 52 boxplots denote the y value associated with
x1 = 41

If we consider the projections of the 387,072 configura-
tions onto the longitudinal axis, we obtain 42,081 possibil-
ities. For instance, as shown in Fig. 2, Arizona has the two
most different sets of configurations. In the lower part of the
figure, there are 4!/2!2! = 6 distinct ways of allocating the
four values of y to distinct values of x1 in the left-hand ar-
rangement, one for the central arrangement and 4! = 24 for
the right hand arrangement, making 31 in all. For the upper
panel there are 52 possibilities, making 83 in total for Ari-
zona. The other sites have 13 for Oxford, 13 for Zurich1 and
3 for Zurich2.

For each of the 83 configurations for Arizona there are
507 (13 × 13 × 3) different ways to obtain configurations
for Oxford or Zurich. Figure 7 presents boxplots of the t-
statistics for regression only on x1 divided according to these
83 configurations. In Fig. 7 each boxplot is formed from the
507 values of the t-statistic for each Arizona configuration.
We see two sets of values of boxplots, divided, due to the
labelling, into two groups each. This structure is very clear
in Fig. 8 which gives histograms of these values divided ac-
cording to the value of y at x1 = 41. In effect, since x2 is not
significant, we are splitting out the statistics in the bimodal
bottom panel of Fig. 6. One of the sets of values in Fig. 8
centres around −0.6, the other centres around −2.8. In fact,
the value −1.5 completely separates the two sets.

The ordered responses for Arizona are 591, 606, 690
and 701. Among configurations which assume that Arizona
dated both A1 and A2 (see Fig. 1) the 13 which associate

y = 591 with x1 = 41 have in general, as Fig. 8 shows, the
smallest absolute values of the t-statistic. The 13 configura-
tions which associate y = 606 with 41, which we call 41–
606, have slightly larger absolute values of the statistic, but
the values are again non-significant. For all the other con-
figurations the t-statistic is significant; there is evidence of
a relationship, with a negative slope, between age and posi-
tion.

It is clear that inference about the slope of the relationship
depends critically on whether A2 was analysed and so on
which value of y, if any, is associated with x1 = 41. We now
analyse the data structure, taking a typical member inside
the 507 members of 41–591 and of 41–690 and look at some
simple diagnostic plots.

To determine whether the proposed data configuration
41–591 is plausible we look at residuals from the fitted re-
gression model. To overcome the potential problem of mask-
ing (when one outlier can cause another to be hidden) we use
a forward search (Atkinson and Riani 2000) in which sub-
sets of m carefully chosen observations are used to fit the
regression model and see what happens as m increases from
2 to 12. The left-hand panel of Fig. 9 shows a forward plot of
the residuals of all observations, scaled by the estimate of σ

at the end of the search, that is when all 12 observations are
used in fitting. The plot shows the pattern typical of a sin-
gle outlier, here 41–591 which is distant from all the other
observations until m = n, when it affects the fitted model.
The residuals for the other 11 observations are relatively sta-
ble. The right-hand panel of the figure gives the scaled least
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Fig. 8 Histograms of values of t -statistics from Fig. 7 divided according to the value of y from Arizona associated with x1 = 41; reading down,
y = 591, 606, 690 and 701

Fig. 9 Analysis of residuals for one configuration in 41–591, that is when yx1=41 = 591. Left-hand panel, forward plot of scaled residuals showing
that this assignment produces an outlier. Right-hand panel, plot of LTS residuals

trimmed squares (LTS) residuals against observation num-
ber (Rousseeuw 1984). Here again the combination 41–591
is outlying.

The configuration 41–591 led to a non-significant slope
for the regression line. Figure 10 gives a similar set of plots
for the configuration 41–690 which does give a significant
negative slope. But, here again, there is a single outlier, the
combination 41–690. This observation again lies well below
all others in the forward plot of residuals, until m = n. The

plot of LTS residuals also shows that this observation is re-
mote from the others.

The conclusion from this analysis of the plots is that
whether one of the lower y values, 591 or 606, or one of
the higher y values, 690 or 701, from Arizona is assigned
to x1 = 41, an outlier is generated, indicating an implausi-
ble data set. The comparable plots when it is assumed that
Arizona only analysed A1, for example Fig. 11, are quite
different in structure. There is a stable scatter of residuals
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Fig. 10 Analysis of residuals for one configuration from 41–690. Left-hand panel, forward plot of scaled residuals showing that this assignment
also produces an outlier. Right-hand panel, plot of LTS residuals

in the left-hand panel as the forward search progresses, with
no especially remote observation. In addition, there are no
large LTS residuals.

The broader conclusion of our analysis is that Arizona
only analysed A1. We can therefore remove from our analy-
sis all the combinations in which A2 was included. The dis-
tribution of the t-statistic under uncertainty about the allo-
cations within A1 and the other sites is that in the right-hand
panel of Fig. 7. The resulting histogram of values is similar
to those we have already seen, such as the lower panel of
Fig. 8. As a consequence there is evidence of a trend in the
age of the sample with the value of x1. The significance of
this value does not depend strongly on the spatial allocation
of samples within sites.

6 Discussion

Our analysis is of the radiocarbon dates which come directly
from the assay of the samples. It is customary, as we have
done, to treat these dates as being normally distributed (for
example Buck and Blackwell 2004) so that normal theory
hypothesis tests and regression analyses apply in this scale
as they would in many analyses of data from physical or
chemical measurements.

In our simple normal-theory model (1) there is evidence
that not all means μi are equal. The alternative we con-
sider is that there is a smooth trend which we approximate
by a simple regression model. Justification for this physical
model comes from Freer-Waters and Jull (2010) who com-
ment that the various pretreatments used by Damon et al.
(1989) ensure that the dates are not so sensitive as to fluctu-

ate over small distances due, for example, to handling. There
is also no evidence of any patching in this part of the TS
which might cause a jump in dating. Debris of the kind we
mentioned in Sect. 1, that had built up over the years, would
have been removed. An alternative approach would be to
consider that the errors were correlated. However, the errors
in observation arise from the measurement process and so
do not have a spatial component.

Freer-Waters and Jull report a photomicrographic inves-
tigation of the sample analysed by Arizona and conclude,
partly from the structure of the fibres, that the sample stud-
ied by Arizona came from the main part of the shroud. Af-
ter we had completed our analysis we received a personal
communication from Prof. Jull of the University of Arizona
confirming that they did indeed only analyse A1. This find-
ing provides a nice vindication of our methodology.

The next stage in a standard analysis is conversion to cal-
ibrated years BP. Unfortunately the concentration of atmo-
spheric carbon 14 fluctuates and the curve for conversion
to calibrated years, whilst basically straight, shows series
of local maxima and minima: see Fig. 3 of Damon et al.
(1989) or Fig. A13 of Reimer et al. (2004). Christen and
Sergio Perez (2009) provide a robust Bayesian analysis of
calibrated years which can allow for different accuracies at
the different laboratories. Ramsey (2009) considers a variety
of errors that can occur in radiocarbon dating and describes
a program for outlier detection that draws on the ideas of
Christen. Importantly, these methods of outlier detection as-
sume random samples with a fixed mean. If spatial regres-
sion is present, observations with extreme values of x will
tend to have extreme values of y. These observations will
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Fig. 11 Analysis of residuals for a typical configuration when all Arizona subsamples come from A1. Unlike in Figs. 9 and 10 there is now no
indication of the existence of outliers

then be downweighted or identified as outliers, when the ev-
idence for regression will be reduced or lost. However, it is
not our purpose to discuss the details of dating. Our purpose
is to use these data to illustrate a statistical procedure for
regression analysis with partially labelled regressors which
relies on simulation based inference and on graphical meth-
ods, including the forward search, for outlier detection.

One further statistical point is raised by Freer-Waters and
Jull (2010) who comment on the way in which the sample
was taken. It is always possible to argue that the material of
the chosen corner was, in some way, different from that of
the rest. This defect could have been avoided by more care
in the design of the sampling experiment.

Suppose that samples could be taken anywhere in the
TS. If the TS has been contaminated, the purpose of the
measurements would be to establish that at least some parts
of the material are old. A space-filling design is then ap-
propriate such as are used in computer experiments (Sacks
et al. 1989). In two dimensions the ‘Latin-hypercube’ de-
signs would be generated by conceptually dividing the TS
into n rows and n columns, creating n2 potential experimen-
tal units. A set of n units is then chosen for experimenta-
tion and assigned to one of the laboratories. Spatial cover
is achieved by choosing the units such that there is one in
each row and column. The units can be chosen at random,
and any seemingly unsatisfactory pattern, such as one that
is spatially too regular, rejected. Alternatively, sampling can
be only from a set of units which have some desirable spa-
tial property, a procedure preferred by Bailey and Nelson
(2003). The design of spatial experiments is given book-
length treatment by Müller (2007).

Until less intrusive methods of age assessment are de-
veloped, samples will presumably be confined to the edges

of the TS. However, in any further sampling, care should
be taken to avoid confounding between location and labo-
ratory that is an unfortunate aspect of the current data. Our
permutation-based regression analysis has been able to ex-
plain the observed heterogeneity of the data without the in-
troduction of laboratory effects. In this we are consistent
with the analyses of the other fabrics, where such hetero-
geneity is absent. The values of the t-tests in the right-hand
part of Fig. 7 show that the significance of this regression
does not depend on the particular permutation chosen. Fur-
ther, the residual plot in Fig. 11 shows that the residuals for
the three readings from Oxford (observations 5, 6 and 7) are
not in any way anomalous.

The presence of this trend explains the difference in
means that was detected by Damon et al. (1989) and in our
Table 1. The effect is that of a decrease in radiocarbon age
BP as x1 increases. Our results indicate that, for whatever
reasons, the structure of the TS is more complicated than
that of the three fabrics with which it was compared.

Appendix: Weighted and unweighted analyses

The data suggest three possibilities for the weights vij in (1):
1. Unweighted Analysis. Standard analysis of variance:

all vij = 1.
2. Original weights. We weight all observations by

1/vij , where the vij are given in Table 1. That is, we per-
form an analysis of variance using responses zij = yij /vij .
If these vij are correct, in (1) σ = 1 and the total within
groups sum of squares in the analysis of variance is dis-
tributed as χ2 on 9 degrees of freedom, with the expected
mean squared error being equal to one.
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Table 2 Four fabric types: significance levels of tests of homogeneity
of variances and means for unweighted and weighted analyses. The
modification to the weights for Arizona uses (2) individually for each
of the four fabric types

Unweighted Original
weights

Modified
weights

Shroud

Variance Homogeneity 0.787 0.354 0.700

Difference in Means 0.0400 0.0043 0.0497

Islamic/Christian linen

Variance Homogeneity 0.656 0.376 0.868

Difference in Means 0.8536 0.387 0.020

Egyptian mummy

Variance Homogeneity 0.095 0.015 0.020

Difference in Means 0.712 0.126 0a

Cope from Var

Variance Homogeneity 0.523 0.082 0.495

Difference in Means 0.384 0.081 0b

a2.10 × 10−4

b2.67 × 10−4

3. Modified weights. The vij for the TS from Arizona in
Table 1 are very roughly 2/3 of those for the other sites. The
text above Table 1 of Damon et al. (1989) indicates that the
weights for Arizona include only two of the three additive
sources of random error in the observations. Table 2 of their
paper gives standard deviations for the mean observation at
each site calculated to include all three sources. In terms of
the vij the standard deviations of the means are

s.d. mean(i) = 1

ni

(
ni∑

j=1

v2
ij

)0.5

. (2)

These two sets of standard deviations are also given in Ta-
ble 1. Agreement with (2) is good for Oxford, and better for
Zurich. However, for Arizona the ratio of the variances is
3.13. We accordingly modify the standard deviations for the
individual observations for Arizona in Table 1 by multiply-
ing by 1.77 = √

3.13, when the values become 53, 62, 73
and 58. The three laboratories thus appear to be of compa-
rable accuracy, a hypothesis we now test.

We used these three forms of data to check the homo-
geneity of variance and the homogeneity of the means. A
summary of the results for the TS is in the first two lines of
Table 2.

The first line of the table gives the significance levels for
the three modified likelihood ratio tests of homogeneity of
variance across laboratories (Box 1953). In no case is there
any evidence of non-homogeneous variance, that is whether
zij is unweighted, or calculated using either set of vij , the
variances across the three sites seem similar. Of course, any

test for comparing three variances calculated from 12 obser-
vations is likely to have low power.

We now turn to the analysis of variance for the means of
the readings. If the weights vij are correct, it follows from
(1) that the error mean squares for the two weighted analy-
ses should equal one. In fact, the values are 4.18 and 2.38.
The indication is that the calculations for the three compo-
nents of error leading to the standard deviations vij fail to
capture all the sources of variation that are present in the
measurements.

The significance levels of the F tests for differences be-
tween the means, on 2 and 9 degrees of freedom, are given
in the second line of the table. All three tests are significant
at the 5 % level, with that for the original weights having a
significance level of 0.0043, one tenth that of the other anal-
yses. This high value is caused by the too-small vij for Ari-
zona making the weighted observations zij for this site rel-
atively large. The unweighted analysis gives a significance
level of 0.0400, virtually the same as the value of 0.0408 for
the chi-squared test quoted by Damon et al. (1989). In calcu-
lating their test they remark “it is unlikely the errors quoted
by the laboratories for sample 1 fully reflect the overall scat-
ter”, a belief strengthened by the value of 2.38 mentioned
above for the mean square we calculated.

We repeated the three forms of analysis for homogeneity
on the three control samples. The results are also given in
Table 2. In calculating the modified weights for Arizona, we
used (2) for each fabric. The unweighted analysis does not
reveal any inhomogeneity of either mean or variance. How-
ever, the analysis with adjusted weights gives significant dif-
ferences between the means for the three laboratories for all
fabrics as well as differences in variance for the mummy
sample.

One example of the effect of the weights is that of
the analysis at Zurich of the mummy samples for which
the values of yij /vij are 1984/50 = 39.6800, 1886/48 =
39.2917 and 1954/50 = 39.08. These virtually identical val-
ues partially explain the significant values in Table 2 for the
weighted analysis of this material. A footnote to the table
in Nature comments on the physical problems (unravelling
of the sample) encountered at Zurich. Since no fabric shows
evidence of variance heterogeneity on the original scale, we
have focused on an unweighted analysis of the TS data.
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