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Summary. We use the forward search to provide robust Mahalanobis distances to detect the
presence of outliers in a sample of multivariate normal data. Theoretical results on order sta-
tistics and on estimation in truncated samples provide the distribution of our test statistic. We
also introduce several new robust distances with associated distributional results. Comparisons
of our procedure with tests using other robust Mahalanobis distances show the good size and
high power of our procedure. We also provide a unification of results on correction factors for
estimation from truncated samples.
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1. Introduction

The normal distribution, perhaps following data transformation, has a central place in the anal-
ysis of multivariate data. Mahalanobis distances provide the standard test for outliers in such
data. However, it is well known that the estimates of the mean and covariance matrix found by
using all the data are extremely sensitive to the presence of outliers. When there are many outliers
the parameter estimates may be so distorted that the outliers are ‘masked’ and the Mahalanobis
distances fail to reveal any outliers, or indicate as outlying observations that are not in fact so.
Accordingly, several researchers have suggested the use of robust parameter estimates in the
calculation of the distances.

For example, Rousseeuw and van Zomeren (1990) used minimum volume ellipsoid estimators
of both parameters in calculation of the Mahalanobis distances. More recent work such as Pison
et al. (2002) or Hardin and Rocke (2005) uses the minimum covariance determinant (MCD)
estimator, whereas Atkinson et al. (2004), chapter 3, employed the series of robust estimators
that is provided by the forward search to explore the structure of the Mahalanobis distances. The
evidence that these procedures work for finite samples is little more than anecdotal—outliers
that are generally believed, from other analyses, to be present are found as are outliers that are
introduced into simulated data sets, or formed by perturbation of existing data. There are very
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few discussions of size and power. Cook and Hawkins (1990) suggested that the procedure of
Rousseeuw and van Zomeren (1990) may find ‘outliers everywhere’. The implication is that the
size of the outlier test may be very much larger than the nominal 5% or 1%.

The purpose of our paper is to introduce a new outlier test using the forward search and to
compare its size and power with the best existing tests. Many of these methods are designed to
test whether individual observations are outlying. As do Becker and Gather (1999), we, however,
stress the importance of multiple outlier testing and focus on simultaneous tests of outlying-
ness. We develop methods that are intended, when the samples are multivariate normal, to find
outliers in α% of the data sets. We show that our procedure has superior power as well as good
size and so is to be recommended.

We find theoretical boundaries for our forward search procedure that allow for simultaneous
inference. For the other tests, which use robust Mahalanobis distances, we use Bonferroni argu-
ments to control for simultaneity. Our comparisons include both small sample correction factors
and consistency corrections, some of which are newly derived. But for most existing tests even
these corrections, combined with Bonferronization, cannot control the size of the global test. In
fact, we find that, even when simultaneity is taken into account in these procedures, the actual
size of the global outlier test may be much larger than the nominal 1% (in one case even 88.6%).
The findings of Cook and Hawkins (1990) are not due solely to the omission of correction
factors but are indicative of a wider problem with this class of procedures especially when the
standard χ2 reference distribution is employed.

Mahalanobis distances and the forward search are introduced in Section 2. In Section 3 we
exhibit bootstrap envelopes for the distribution of distances in the forward search. Theoreti-
cal results on the distribution are in Section 4. In particular, Section 4.1 uses results on order
statistics to find the distribution of ordered Mahalanobis distances. In Section 4.2 we use the
results of Tallis (1963) on elliptically truncated multivariate normal distributions to adjust for
the bias that is caused by estimation of the covariance from a subset of observations. This result
also provides a simple unexploited route to the consistency corrections that are required for
distances based on the MCD.

Our procedure for testing for the presence of one or more outliers in a sample is described in
Section 5. Several established robust procedures for the detection of individual outlying obser-
vations, such as those of Rousseeuw and Van Driessen (1999) and Hardin and Rocke (2005),
are recalled in Section 6. Some of these methods use reweighted estimates and so are based
on two subsamples of the data. To adapt these tests to the detection of outliers in a sample,
we introduce in Section 6.3 a Bonferroni correction to allow for simultaneity. This allows us
to develop two new versions of reweighted Mahalanobis distances. The comparisons of size
in Section 7.1 show that our procedure has better size than many competitors. In Section 7.2
we evaluate power both for the detection of samples containing outliers and for determining
the actual number of outlying observations. The results show the superior performance of our
procedure.

The paper concludes with brief comments on the relationship of outlier detection to cluster
analysis. Appendix A discusses the importance of careful numerical procedures in the calcula-
tion of extreme values of order statistics and Appendix B draws a connection between the results
of Tallis (1963) and the distribution of observations in a truncated univariate normal distribu-
tion. To keep our paper to a reasonable length, numerical details of several of our examples,
together with plots, are given in Riani et al. (2007).

Our procedure provides the most powerful test for outliers among those in our comparisons.
It can be further enhanced by use of the rich variety of information that arises from monitoring
the forward search.
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2. Distances

The main tools that we use are the values of various Mahalanobis distances. The squared dis-
tances for the sample are defined as

d2
i = .yi − μ̂/TΣ̂−1.yi − μ̂/, .1/

where μ̂ and Σ̂ are the unbiased moment estimators of the mean and covariance matrix of the
n observations and yi is v×1.

In the methods that are compared in this paper the parameters μ and Σ are estimated from
a subset of m observations, yielding estimates μ̂.m/ with μ̂.m/j = ȳj and Σ̂.m/ with Σ̂.m/jk =
.yj − ȳj/T.yk − ȳk/=.m− 1/. Note that here yj and yk are m× 1. From this subset we obtain n
squared Mahalanobis distances

d2
i .m/= .yi − μ̂.m//TΣ̂−1.m/.yi − μ̂.m//, i=1, . . . , n: .2/

The single subsets that are used for each MCD-based method are defined in Section 6. In the
forward search we use many subsets for outlier detection, rather than one. The difference is
between viewing a movie and a single snapshot.

In the forward search we start with a subset of m0 observations which grows in size during
the search. When a subset SÅ.m/ of m observations is used in fitting we order the squared
distances and take the observations corresponding to the m + 1 smallest as the new subset
SÅ.m+1/. Usually this process augments the subset by one observation, but sometimes two or
more observations enter as one or more leave. To start the procedure we find a starting sub-
set SÅ.m0/ that is not outlying in any two-dimensional projection of the data (Atkinson et al.
(2004), section 2.13).

In our examples we look at forward plots of quantities that are derived from the distances
di.m/ in which the parameters are estimated from the observations in SÅ.m/. These distances
for i �∈SÅ.m/ tend to decrease as n increases. If interest is in the latter part of the search we may
use scaled distances

dsc
i .m/=di.m/{|Σ̂.m/|=|Σ̂.n/|}1=2v, .3/

where Σ̂.n/ is the estimate of Σ at the end of the search.
To detect outliers all methods compare selected Mahalanobis distances with a threshold. We

examine the minimum Mahalanobis distance among observations that are not in the subset

dmin.m/=min{di.m/}, i �∈SÅ.m/, .4/

or its scaled version dsc
min.m/. If this ordered observation [m+1] is an outlier relative to the other

m observations, this distance will be ‘large’ compared with the maximum Mahalanobis distance
of observations in the subset.

In uncalibrated use of the distances dmin.m/ to detect outliers the decision whether a differ-
ence in distances is ‘large’ is subjective, without reference to any null distribution. Examples
include the data analyses in chapter 3 of Atkinson et al. (2004). Even if the asymptotic distri-
bution of the individual distances is determined, as in Clarke and Schubert (2006), we still need
to calibrate the complete search to provide an outlier test of ascertainable properties.

To calibrate the forward search and so to provide an objective basis for decisions about the
number of outliers in a sample requires the distribution of dmin.m/ in the forward search. One
possibility is to use bootstrap simulations. We simulate the search a large number of times,
perhaps 10000. Then, for each value of m that is of interest, we have 10000 values of dmin.m/

from which we determine, for example, the 99% point of the distribution for each m. The upper
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99% envelope is then the collection of these pointwise values which we use as a threshold in the
detection of outliers. We now illustrate the use of such envelopes.

3. The structure of forward plots and the importance of envelopes: Swiss banknotes

Flury and Riedwyl (1988), pages 4–8, introduced 200 six-dimensional observations on Swiss
banknotes withdrawn from circulation, which an expert has classified as genuine or forged. Units
1–100, the genuine notes, form a distinct cluster. We analyse units 101–200, the forgeries, which
are less homogeneous. Fig. 1 is a plot of the minimum unscaled Mahalanobis distances during
the forward search with envelopes from 10000 simulations. There is a large peak at m = 85,
indicating that there are at least 15 outliers. The peak occurs because the outliers form a loose
cluster. Once one of these observations has been included in SÅ.m/, the parameter estimates are
slightly changed, making less remote the next outlier in the cluster. At the end of the search the
distances increase again when the remaining observations that are not in SÅ.m/ are somewhat
remote from the cluster of outliers. Large distances at the end of the search are typical of data
with unclustered outliers.

An important feature of Fig. 1 is that the plot goes outside the upper envelope when m is
slightly less than 85. This is because, if we have a sample of 85 observations from the normal
distribution, the last few distances will be relatively large and the envelope will curve upwards
as it does in the plots for m a little less than 100.

To illustrate this point, Fig. 2 shows the successive superimposition of envelopes from n=84.
There is no evidence of any outliers when n = 84 and n = 85, but when n = 86 we obtain clear
evidence of a single outlier with observation 86 well outside the 99% envelope. When n=87 we
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Fig. 1. Swiss banknotes, forgeries (nD100)—forward plot of the minimum unscaled Mahalanobis distance
with superimposed 1%, 5%, 95% and 99% bootstrap envelopes from 10000 simulations: there is a clear
indication of the presence of outliers which starts around mD84
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have even stronger evidence of the presence of outliers. As a result we conclude that there are 15
outlying observations in the data on forged banknotes. The scatter plot in Fig. 3.52 of Atkin-
son et al. (2004) shows that these observations form a loose cluster, perhaps indicative of the
activities of a second forger.

The outlier detection method that we introduce in Section 5 is an automatic version of pro-
cedures such as that illustrated here. An important feature is that we may need envelopes for
several values of n as outliers are identified. However, we avoid extensive simulations by use of
the theoretical results of Section 4 to provide the required envelopes. We first find theoretical
envelopes for scaled distances and then convert them to those that are unscaled.

In using the forward search we potentially make many comparisons, one for each value of m.
The interpretation of the threshold and so our detection rule need to allow for simultaneity, so
that we have a test with size α for the presence of at least one outlier. For the effect of simultaneity
on the size of forward search tests in regression see Atkinson and Riani (2006).

4. Envelopes from order statistics

4.1. Scaled distances
We now use order statistics to find good, fast approximations to the bootstrap envelopes that
were mentioned in the previous section. For the moment we take μ and Σ as known, so our
results apply to both scaled and unscaled distances. The test statistic (4) is the .m+1/th ordered
value of the n Mahalanobis distances. We can therefore use distributional results to obtain
approximate envelopes for our plots. Since these envelopes do not require simulation in their
calculation, we can use them for much more extreme points of the distribution than would be
possible for bootstrap intervals without massive simulations.

Let Y[m+1] be the .m+1/th order statistic from a sample of size n from a univariate distribution
with cumulative distribution function (CDF) G.y/. Then the CDF of Y[m+1] is given exactly by

P.Y[m+1] �y/=
n∑

j=m+1

(
n

j

)
G.y/j{1−G.y/}n−j: .5/

See, for example, Casella and Berger (2002), page 228. Further, it is well known that we can
apply properties of the beta distribution to the right-hand side of equation (5) to obtain

P.Y[m+1] �y/= IG.y/.m+1, n−m/, .6/

where

Ip.A, B/=
∫ p

0

1
α.A, B/

uA−1.1−u/B−1 du

is the incomplete beta integral. From the relationship between the F - and the beta distribution
it is possible to rewrite equation (6) as

P.Y[m+1] �y/=P

{
F2.n−m/,2.m+1/ >

1−G.y/

G.y/

m+1
n−m

}
.7/

where F2.n−m/,2.m+1/ is the F -distribution with 2.n−m/ and 2.m+1/ degrees of freedom (Guen-
ther, 1977). Thus, the required quantile of order γ of the distribution of Y[m+1], say ym+1,n;γ ,
can be obtained as

ym+1,n;γ =G−1
{

m+1
m+1+ .n−m/x2.n−m/,2.m+1/;1−γ

}
.8/
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where x2.n−m/,2.m+1/;1−γ is the quantile of order 1 −γ of the F -distribution with 2.n−m/ and
2.m+1/ degrees of freedom. The argument of G−1.·/ in equation (8) becomes extremely close
to 1 at the end of the search, i.e. as m→n, particularly for large n and extreme γ. Consequently,
care needs to be taken to ensure that the numerical calculation of this inverse distribution is
sufficiently accurate. Details of one case are in Appendix A.

We now consider the choice of G.x/. If we knew both μ and Σ, G.x/ would be χ2
v distrib-

uted. When both μ and Σ are estimated by using maximum likelihood on the whole sample,
the squared distances have a scaled beta distribution. But, in our case, we estimate from a
subsample of m observations that do not include the observation being tested. Atkinson et al.
(2004), pages 43–44, derived distributional results for such deletion Mahalanobis distances. In
the present case we estimate Σ on m−1 degrees of freedom. If the estimate of Σ were unbiased
the null distribution of this squared distance would be

d2
.i/ ∼ n

n−1
v.m−1/

m−v
Fv,m−v: .9/

Plots in Riani et al. (2007) show the superiority of the F -approximation when n=100 and v=6,
values for which asymptotic arguments are unlikely to hold. The χ2-approximation is poor,
with the envelopes being systematically too low.

Unfortunately, the estimate of Σ that we use is biased since it is calculated from the m obser-
vations in the subset that have been chosen as having the m smallest distances. However, in the
calculation of the scaled distances (3) we approximately correct for this effect by multiplication
by a ratio that includes Σ̂.n/ which is unbiased in the absence of outliers (Atkinson et al. (2004),
page 66). So the envelopes for the scaled Mahalanobis distances are given by

Vm,γ =
√(

n

n−1

)√{
v.m−1/

m−v

}√
ym+1,n;γ : .10/

4.2. Approximations for unscaled distances
Unscaled distances cannot take advantage of the beneficial cancellation of bias that is provided
by the ratio |Σ̂.m/|=|Σ̂.n/| in equation (3). However, an approximate correction factor for the
envelopes of unscaled squared Mahalanobis distances (2) can be obtained from results on ellip-
tical truncation in the multivariate normal distribution. Suppose that yi ∼N.μ, Σ/ is restricted
to lie in the subspace

0� .yi −μ/TΣ−1.yi −μ/�b.m/, .11/

where b.m/ is an arbitrary positive constant. Then it follows from the results of Tallis (1963)
that

E.yi/=μ,

var.yi/=k.m/Σ,

where

k.m/= P{X2
v+2 <b.m/}

P{X2
v <b.m/}

and the variable X2
ν has a χ2-distribution on ν degrees of freedom. Our estimate of Σ at step m is

calculated from the m observations yi that have been chosen as having the m smallest (squared)
Mahalanobis distances. If we ignore the sampling variability in this truncation we can take
b.m/ as the limiting value of the mth order statistic in a sample of n squared Mahalanobis dis-
tances. Hence cFS.m/=k.m/−1 for the forward search is the inflation factor for Σ̂.m/ to achieve
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consistency at the normal model. In large samples

cFS.m/= m=n

P.X2
v+2 <χ2

v,m=n/
, .12/

with χ2
v,m=n the m=n-quantile of χ2

v. Our envelopes for unscaled distances are then obtained by
scaling up the values of the order statistics

VÅ
m,γ = cFS.m/Vm,γ :

The bound
√

b.m/ in condition (11), viewed as a function of m, is sometimes called a radius
for trimming size .n − m/=n. García-Escudero and Gordaliza (2005) studied the asymptotic
behaviour of its empirical version when μ and Σ are replaced by consistent robust estimators for
fixed m, such as the MCD-based estimators of Section 6.2. A corollary of the results of Tallis
(1963), relating the truncated univariate normal distribution and χ2

3, is given in Appendix B.
Plots for typical values of n, 200 and 600, with v=5 and v=10 show that the approximation

for scaled distances agrees well with the results of 10000 simulations and is very good virtu-
ally throughout the whole range of m. The approximation for unscaled distances is not perfect
but, as we shall see, the bounds are adequate for outlier detection where we look at the upper
boundaries typically in the last third of the search.

4.3. Asymptotic results for very large samples
For very large n we use the asymptotic normality of order statistics to provide a satisfactory
approximation to condition (5), once more for known μ and Σ. The asymptotic expectation of
Y[m+1] is (Cox and Hinkley (1974), page 470) approximately

ξm+1,n =G−1

(
m+1− 3

8

n+ 1
4

)
:

If we let pξ = .m+1− 3
8 /=.n+ 1

4 / and ξm+1,n =G−1.pξ/, the variance of ξm+1,n (Stuart and Ord
(1987), page 331) is

σ2
ξ = pξ.1−pξ/

nG2.ξm+1,n/
:

Thus, replacing G with the scaled F -distribution (9) yields the asymptotic 100α% point of the
distribution of the scaled squared distance as

ξm+1,n +σξ Φ−1.α/, .13/

where Φ.z/ is the CDF of the standard normal distribution.
For scaled distances expression (13) replaces equation (10). To obtain approximations for the

unscaled distance we again need to apply the results of Section 4.2.

5. The forward search for outlier detection

If there are a few large outliers they will enter at the end of the search, and their detection is not
a problem. However, even relatively small clusters of outliers can be more difficult to identify.
In the Swiss banknote data the search had a central peak around m=85. In more extreme cases
with a cluster of outliers, masking may cause the plot to return inside the envelopes at the end
of the search. Methods of using the forward search for the formal detection of outliers must
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be sensitive to these two patterns—a few ‘obvious’ outliers at the end and a peak earlier in the
search caused by a cluster of outliers.

We can expect the occasional observation to fall outside the bounds during the search even
if there are no outliers. If we ignore the correlation in adjacent distances that is induced by the
ordering imposed by the search, each observation can be taken to have a probability γ =1−α
of falling above the α-point of the pointwise envelope. If γ is small, say 1%, and n = 1000 the
number of observations outside the envelope will have approximately a Poisson distribution with
mean 10. The probability that no observations fall above the envelope will then be exp.−10/,
which is a very small number. We need to be able to distinguish these random occurrences during
the search from important peaks and to control for simultaneity. We require a procedure that
combines high power with a size of α for declaring the sample to contain at least one outlier. In
our exposition and examples we take α=1%.

To use the envelopes in the forward search for outlier detection we accordingly propose a
two-stage process. In the first stage we run a search on the data, monitoring the bounds for all n
observations until we obtain a ‘signal’ indicating that observation m†, and therefore succeeding
observations, may be outliers, because the value of the statistic lies beyond our threshold. In
the second part we superimpose envelopes for values of n from this point until the first time that
we introduce an observation we recognize as an outlier. The envelopes that are shown in Figs
1 and 2 consist roughly of two parts; a flat ‘central’ part and a steeply curving ‘final’ part. Our
procedure FS for the detection of a signal takes account of these two parts.

5.1. Step 1—detection of a signal
There are four conditions, the fulfilment of any one of which leads to the detection of a signal:

(a) in the central part of the search we require three consecutive values of dmin.m, n/ above
the 99.99% envelope or one above 99.999%;

(b) in the final part of the search we need two consecutive values of dmin.m, n/ above 99.9%
and one above 99%;

(c) dmin.n−2, n/ above the 99.9% envelope;
(d) dmin.n − 1, n/ above the 99% envelope. In this case a single outlier is detected and the

procedure terminates.

The final part of the search is defined as

m�n− [13.n=200/0:5],

where here [ ] stands for rounded integer. For n=200 the value is slightly greater than 6% of the
observations. Here we have extended the notation to make clear both the subset size m for the
minimum distance and the size n of the sample and so of the envelopes against which it is to be
assessed.

5.2. Step 2—confirmation of a signal
The purpose of, in particular, the first point is to distinguish real peaks from random fluc-
tuations. Once a signal takes place (at m=m†) we check whether the signal is true. If dmin.m†,
m† +1) is below the 1% envelope, we decide that the signal is false, increment m and return to
step 1.

5.3. Step 3—Identification of outliers
With a true signal we start superimposing 99% envelopes taking nÅ =m† −1, m†, m† +1, . . . until
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the final, penultimate or antepenultimate value is above the 99% threshold or, alternatively, we
have a value of dmin.m, nÅ/ for any m>m† which is greater than the 99.9% threshold.

In addition if we have an incontrovertible signal,

(a) three consecutive values of dmin.m, n/ above the 99.999% threshold or
(b) 10 values of dmin.m, n/ above the 99.999% threshold,

we then decide that outliers are present and proceed directly to step 3.

Some features of this procedure may seem arbitrary. However, as we see in Section 6, there
are likewise arbitrary decisions in the MCD-based procedures in the definition of the subset
of m observations that are used in the final calculation of Mahalanobis distances and in the
reference distributions that are used for testing these distances. In addition, most existing robust
procedures rely heavily on simulation-based calibration factors that become essential for simul-
taneous outlier testing.

6. Other outlier detection procedures

6.1. Bonferroni bounds in the forward search
The statistic (2) provides the basis for our test of the outlyingness of observation [m+1]. Hadi
(1994) used a Bonferroni bound to allow for the ordering of the distances during his forward
search and compared a slightly scaled version of expression (2) with the percentage points of
χ2

v,.α=n/, the scaling being to allow for the estimation of Σ.
Since the test is for an outlier in a sample of size m + 1, we use the Bonferroni bound

χ2
v,{α=.m+1/} rather than χ2

v,.α=n/. Fig. 3 shows the resulting 95% and 99% bounds super-
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Fig. 3. 2000 normal observations, v D10: forward plot of 90% and 99% envelopes of minimum Mahalanobis
distances with superimposed Bonferroni bounds including Hadi’s correction
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imposed on a forward plot of bootstrap envelopes for n=2000 and v=10. These bounds were
calculated by using the empirical scaling in section 2 of Hadi (1994) which is an improvement
of Hadi (1992). They are unrelated to the true distribution, except for the last step of the search;
owing to the low correlation of the distances the bound is almost exact when m=n−1. Earlier
in the search the bounds are far too large, because Σ̂.m/, despite Hadi’s rescaling, is treated
as an estimate from a full sample, rather than from the truncated sample that arises from the
ordering of the distances.

Wisnowski et al. (2001), page 360, reported that the related procedure of Hadi and Simonoff
(1993) for regression has a low detection rate for moderate and small outliers and an abnormally
low false alarm rate. Similar properties for multivariate data can be inferred from Fig. 3.

6.2. Distances for outlier detection
In this section we describe some variants of the Mahalanobis distance that have been recom-
mended for outlier detection. These vary in the subset or subsets of observations that are used
for parameter estimation. When robust estimates are used, there are several possible adjust-
ments to obtain consistent and possibly unbiased estimators of Σ. There is also a choice of
reference distribution against which to assess the observed distances. We leave until Section 6.3
the adjustments that are made for simultaneous inference which introduce further subsets of
the data to be used for estimation.

6.2.1. Tests MD and MDK
The Mahalanobis distance (1), with parameters estimated from all the data, has long been sug-
gested as an outlier test, e.g. by Wilks (1963). As is well known, it is exceptionally sensitive
to masking. However, we include it in some of our comparisons to illustrate just how sensitive
it is.

If the values of the parameters μ and Σ were known, the distribution of the distance would be
χ2

v. As an outlier test we call this MDK with MD the test that is based on the same distances but
referred to the correct scaled beta distribution. Section 2.6 of Atkinson et al. (2004) gives this
distribution; section 2.16 gives references to the repeated rediscovery of related distributional
results.

6.2.2. Test MCD
One popular robust estimator is the MCD estimator that was described in Rousseeuw and Leroy
(1987), page 262. Fix an integer h such that⌊n+v+1

2

⌋
�h<n,

where �·� denotes the integer part. The preferred choice of h for outlier detection is its lower
bound, which yields the breakdown value

�.n−v+1/=2�
n

: .14/

Let μ̂MCD and Σ̂MCD be the mean and the covariance matrix of the subset of h observations for
which the determinant of the covariance matrix is minimal. μ̂MCD is defined to be the MCD
estimator of μ, whereas the MCD estimator of Σ is proportional to Σ̂MCD. The proportionality
constant is chosen to achieve consistency at the normal model. It was derived by Butler et al.
(1993) and by Croux and Haesbroeck (1999) as
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cMCD.h, n, v/= h=n

P.X2
v+2 <χ2

v,h=n/
: .15/

For MCD-based estimators with h=m, the consistency factor is then equal to cFS.m/ defined in
equation (12). The MCD is used because it has rate of convergence n−1=2, unlike the minimum
volume ellipsoid estimator (Davies, 1992) for which convergence is at rate n−1=3. Another reason
is the fast algorithm of Rousseeuw and Van Driessen (1999), which has been implemented in
many languages.

Although consistent at the normal model, the estimator

cMCD.h, n, v/Σ̂MCD

is still biased for small sample sizes. Pison et al. (2002) showed by Monte Carlo simulation the
importance of applying a small sample correction factor to it. Let sMCD.h, n, v/ be this fac-
tor for a specific choice of n and v and breakdown value (14). The resulting (squared) robust
Mahalanobis distances are then

d2
.MCD/i =kMCD.yi − μ̂MCD/TΣ̂−1

MCD.yi − μ̂MCD/, i=1, . . . , n, .16/

where kMCD ={cMCD.h, n, v/ sMCD.h, n, v/}−1. These distances are compared with the α% cut-
off value of their asymptotic χ2

v-distribution, with α in most published reports between 0.01
and 0.05.

6.2.3. Test HR
The exact finite sample distribution of the robust Mahalanobis distances (16) is unknown, but
Hardin and Rocke (2005) proposed a scaled F -approximation which, in small and moderate
samples, outperforms the asymptotic χ2

v-approximation of MCD.

6.2.4. Test RMCD-C
To increase efficiency, a reweighted version of the MCD estimators is often used in practice.
These reweighted estimators, μ̂RMCD and Σ̂RMCD, are computed by giving weight 0 to obser-
vations for which d.MCD/i exceeds a cut-off value. Thus a first subset of h observations is used
to select a second subset from which the parameters are estimated. The default choice for this
cut-off is

√
χ2

v,0:025: .17/

Both the consistency (Croux and Haesbroeck, 2000) and the small sample (Pison et al., 2002)
correction factors cRMCD.h, n, v/ and sRMCD.h, n, v/ can be applied toΣ̂RMCD, when the squared
robust Mahalanobis distances become

d2
.RMCD-C/i =kRMCD-C.yi − μ̂RMCD/TΣ̂−1

RMCD.yi − μ̂RMCD/, i=1, . . . , n, .18/

with kRMCD-C = {cRMCD.h, n, v/ sRMCD.h, n, v/}−1. The reweighted distances are again com-
pared with their asymptotic χ2

v-distribution (Lopuhaä, 1999).

6.2.5. Test RMCD
The original MCD literature (Rousseeuw and Leroy, 1987; Rousseeuw and Van Driessen, 1999)
did not suggest use of the consistency correction factor cRMCD.h, n, v/. The robust Mahalanobis



Finding Outliers 13

distances arising from this basic reweighted MCD estimator, d2
.RMCD/i, are then computed as

in equation (18), but with kRMCD = sRMCD.h, n, v/−1 replacing kRMCD-C.

6.2.6. Test PP
An alternative approach to robust multivariate estimation is based on projecting the sample
points onto a set of univariate directions. Peña and Prieto (2001) suggested considering the set
of 2v directions that are obtained by maximizing and minimizing the kurtosis coefficient of the
projected data. They also proposed an iterative algorithm where each observation is repeatedly
tested for outlyingness in these directions, using subsamples of decreasing size with potential
outliers removed. Their final robust estimates, μ̂PP and Σ̂PP, are computed by using the observa-
tions which are considered not to be outliers at the end of the iterations. A calibration factor kPP
is still required to allow for bias in estimation of Σ. The resulting (squared) robust Mahalanobis
distances

d.PP/i =kPP.yi − μ̂PP/TΣ̂−1
PP.yi − μ̂PP/, i=1, . . . , n, .19/

are compared with the {v.n−1/=.n−v/}Fv,n−v-distribution. The calibration factor kPP and the
thresholds that are required to define potential outliers were chosen by simulation.

6.3. Simultaneity and Bonferronization
To be compared, different testing procedures must look at the same null hypothesis. With only
a few exceptions, such as Becker and Gather (1999), the published literature on robust Mahal-
anobis distances has been concerned with detection of individual outliers, i.e. with repeated
testing of the null hypotheses

H0 : yi ∼N.μ, Σ/, i=1, . . . , n, .20/

each at level α. In that framework the per comparison error rate α is interpreted as the propor-
tion of observations that one should be prepared to declare as outliers in any application. On
the contrary, in our procedure of Section 4 the test statistic (4) is the .m+1/th ordered value of
the n Mahalanobis distances. Its distribution involves the joint distribution of all the distances,
so the null hypothesis of interest becomes the intersection hypothesis

H0 :{y1 ∼N.μ, Σ/}∩{y2 ∼N.μ, Σ/}∩ . . . ∩{yn ∼N.μ, Σ/} .21/

that there are no outliers in the data. A special case of hypothesis (21) was called ‘the general
outlier problem’ by Schwager and Margolin (1982), who derived the corresponding locally best
invariant test as a function of the multivariate sample kurtosis. However, the invariant test is
not robust and does not address the problem of specifying the number and the identity of the
outliers when the null hypothesis is rejected, a goal which is achieved by the third stage of our
procedure in Section 4; superimposing envelopes serves the purpose of precise identification of
how many and which of the n individual hypotheses in expression (21) should be rejected once
a signal has been confirmed.

The forward search α is the size of the test of hypothesis (21), i.e. the probability that at least
one of the individual hypotheses (20) is rejected for some m when hypothesis (21) is true. By
controlling this error rate under the simultaneous hypothesis, we are willing to tolerate a wrong
conclusion in (100α)% of data sets without outliers. We let α have a similar interpretation in
the robust procedures of Section 6.2 by comparing the individual statistics d.MCD/i, d.RMCD/i,
d.RMCD-C/i and d.PP/i, i= 1, . . . , n, with the αÅ =α=n cut-off value of their reference distribu-
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tions. A Bonferroni approach is appropriate in the MCD context because, as was shown by
Hardin and Rocke (2005), extreme observations are approximately independent of the estima-
tors μ̂MCD and Σ̂MCD. Hence the intersection between multiple tests of hypothesis (20), sharing
the same MCD estimates, should be negligible, at least when H0 is rejected. Although the extent
of dependence among the projection-based distances d.PP/i is unknown, we note that a Bonfer-
roni approach was adopted also by Becker and Gather (1999) in their study of robust distances
for simultaneous outlier identification.

This Bonferroni procedure applies to the level at which we say that at least one outlier is
present. We can, in addition, apply the Bonferroni argument to selection by the MCD of obser-
vations that are to be used in parameter estimation for the reweighted distances. We suggest two
such modifications.

6.3.1. Test RMCD-B
The default cut-off value for excluding observations in the computation of reweighted MCD
estimators is given by expression (17). However, this cut-off is not coherent with the intersection
hypothesis (21), as individual outlier tests are now performed with size αÅ =0:01=n. We accord-
ingly calculate a modified version of the reweighted estimators, say μ̂RMCD-B and Σ̂RMCD-B,
where observations are given weight 0 if d.MCD/i exceeds

√
χ2

v,αÅ : .22/

Substituting these modified estimators into expression (18), we obtain the Bonferroni-adjusted
(squared) reweighted distances

d.RMCD-B/i =kRMCD.yi − μ̂RMCD-B/TΣ̂RMCD-B.yi − μ̂RMCD-B/, i=1, . . . , n: .23/

6.3.2. Test RMCD-D
An alternative Bonferroni-adjusted reweighted MCD distance is obtained by substituting
kRMCD-C for kRMCD in equation (23), thus including the consistency factor as we did in the def-
inition of RMCD-C.

Table 1. Mahalanobis distance outlier tests to be compared with the forward search

Test Description

MDK Squared non-robust distances d2
i ; asymptotic χ2

v-distribution
MD Squared non-robust distances d2

i ; exact scaled beta distribution
MCD Squared MCD distances d2

.MCD/i; asymptotic χ2
v-distribution

RMCD Squared reweighted MCD distances d2
.RMCD/i; asymptotic χ2

v-distribution
RMCD-C Squared reweighted MCD distances with consistency correction d2

.RMCD-C/i;
asymptotic χ2

v-distribution
RMCD-B Squared Bonferroni-adjusted reweighted MCD distances d2

.RMCD-B/i; asymptotic
χ2

v-distribution
RMCD-D Squared Bonferroni-adjusted reweighted MCD distances with consistency

correction d2
.RMCD-D/i; asymptotic χ2

v-distribution
HR Squared MCD distances d2

.MCD/i; scaled F -distribution of Hardin and Rocke
(2005)

PP Squared projection-based robust distances of Peña and Prieto (2001); scaled
F -distribution
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The correction factors in these Bonferroni-adjusted versions of test RMCD include the small
sample correction sRMCD.h, n, v/ which was derived without allowance for simultaneous infer-
ence. The appropriate small sample factor for tests RMCD-B and RMCD-D is not available in
the MCD literature.

A summary of the Mahalanobis distance outlier tests that were considered in our simulations
is given in Table 1.

7. Size and power

7.1. Size
To compare the performance of the various outlier tests we need them to have at least approxi-
mately the same size. To establish the size we performed each nominal 1% test on 10000 sets of
simulated multivariate normal data for four values of n from 100 to 1000 and with dimension
v=5 and v=10. The result was considered significant if at least one outlier was detected.

We summarize our findings in Table 2. For the first eight tests, based on various Mahalanobis
distances, and for test PP we use the Bonferroni correction to obtain a test with nominal size 1%.
The first entry in Table 2 is for the standard Mahalanobis distance with reference values from
asymptotic χ2-distribution that ignores the effect of estimating the parameters. The results are
surprisingly bad: for n=100 and v=10 the size is 0.06% rather than 1%. Even when n=1000,
a value by which asymptotics are usually expected to be a good guide, the size is only 0.79%

Table 2. Size of the nominal 1% test based on 10000
simulations: classical Mahalanobis distances, the six
MCD-based procedures ofTable 1, the projection method
PP and our proposal FS†

Test Sizes (%) for the following values of n:

n=100 n=200 n=500 n=1000

MDK 0.28 0.42 0.70 0.79
0.06 0.44 0.52 0.89

MD 1.12 0.97 0.97 0.89
1.04 1.21 0.99 1.19

MCD 62.43 32.91 8.81 3.71
88.59 49.21 11.76 4.72

RMCD 30.04 10.95 3.78 3.02
61.78 16.37 5.15 3.64

RMCD-C 10.13 3.39 1.70 1.16
32.25 6.04 2.15 1.77

RMCD-B 4.94 1.94 1.16 1.03
12.45 3.33 1.61 1.40

RMCD-D 3.41 1.64 1.09 1.01
8.11 2.90 1.51 1.36

HR 2.41 2.53 1.17 0.97
5.28 2.34 1.09 1.17

PP 1.13 1.04 1.07 1.12
1.07 1.00 0.99 1.03

FS 1.04 1.16 1.15 1.16
1.54 1.31 1.18 1.20

†The first entry in each cell is for v=5 and the second entry
is for v=10.
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when v = 5. There is a sharp contrast with the results by using the correct beta distribution,
when the sizes correctly fluctuate between 0.89% and 1.21%. These results provide a measure
of the fluctuation to be found in our simulation results. They also confirm that our Bonferroni
correction does indeed provide a test with power close to 1%. Despite the correct size of the
test, our simulations in Section 7.2 quantify what is well known in general, that the standard
Mahalanobis distance can have very low power when used as an outlier test.

The next two sets of results are for the MCD and the RMCD test. These results, especially
for n= 100, are exceptionally bad, with sizes of up to 89%, clearly rendering the test unusable
for ‘small’ samples of 100. As n increases, the asymptotically based correction factor improves
the size. But, even when n=1000, the sizes are between 3% and 5%. In view of this performance,
we do not need to consider these tests any further.

The following four tests are versions of the MCD but with better size that improves as we
go down Table 2. For test RMCD-C, that is reweighted MCD with a consistency correction in
the reweighting, the size is around 10% when n = 100 and v = 5. When v = 10 it rises to over
32%. For this and the other three reweighted MCD rules the size decreases with n, being close
to the hoped-for value when n= 500. In test RMCD-B we extend test RMCD-C by including
Bonferroni reweighting to obtain sizes around 5% when n=100 and v=5; for v=10 the value is
12.5%. The version of RMCD-B with consistency correction, which we call test RMCD-D, has
sizes of 3.4% and 8.1% when n=100, with all sizes less than those for RMCD-B. The sizes for
test HR when n=100 are also too large, although throughout Table 2 this test has values that
are among the best for all values of n. The last two entries of Table 2 show that the projection
method PP (after Bonferronization) and our proposal test FS both have satisfactory sizes for
all values of n in the range that was studied, although the values are slightly above 1%.

7.2. Power
We performed numerous simulations to compare the power of the various procedures. We start
with the simultaneous hypothesis (21) that the sample contains at least one outlier. These simu-
lation results are presented as plots. It is customary to plot the power directly, on a scale going
from 0% to 100%. However, such plots are not usually informative, since virtually all procedures
start with a size near 0 and finish with a power near 1. The eye is drawn to the less informative
region of powers around 50%. Accordingly, we instead plot the logit of the power, i.e., if the
power of the procedure is p, we plot y = log{p=.1−p/}, which is an unbounded function of p.
An additional advantage of such plots is that we can make useful comparisons of tests with
different actual sizes although the nominal sizes may be the same.

We again consider the multivariate location–shift model with constant contamination on all
variables. Fig. 4(a) shows results for n = 200 and v = 5 with 5% contamination calculated from
10000simulations.The initialpartof theplotreflects the largersizeof testsHRandRMCD-Bthat
was a feature of Table 2. The power of all the procedures increases with the shift in location. Once
adjustment has been made for the differences in size, tests HR and RMCD-B have better power
thanMDandPP,whichbehaveverysimilarly.TestFSisrevealedasthemostpowerfulprocedure.

Fig. 4(b) is for 30% contamination. The results are similar to those for 5% contamination
with test FS again the most powerful procedure. The PP procedure completely fails, although
our simulations show that it can detect outliers for larger shifts. Further results on rejection of
the simultaneous hypothesis are in section 9.2 of Riani et al. (2007). These findings show the
clear superiority of our algorithm in detecting at least one outlier in contaminated data.

When the simultaneous hypothesis has been rejected it remains to determine which of the
observations actually come from the contaminated part of the sample. We interpret our results
by using ‘average power’ (Benjamini and Hochberg (1995), section 4.2), i.e. the average number
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of contaminated observations correctly identified. Unlike the previous power calculations, the
size of this test tends to zero as the shift decreases until, in the limit, there are no contamin-
ated observations, so they cannot be identified. We accordingly plot the results of our power
calculations directly, rather than as logits.

The comparisons are in Fig. 5 and are even more advantageous for the FS test than those for
simultaneous power. Fig. 5(a), for 5% contamination, shows that virtually no outliers are cor-
rectly identified when the shift in location is 1. As the shift increases, the average power increases
for all procedures except MD. The power of the FS test is highest, with the other procedures in
the same order as for the higher shifts in Fig. 4. The MD test identifies one or no outliers, the
simultaneous power of 0.224 in Fig. 4 being divided by 10 to give the low value here.

The final plot, Fig. 5(b), shows how excellently test FS behaves relatively to all other proce-
dures when there is appreciable contamination. Tests MD and PP are completely disabled by
masking, HR and RMCD-B are little better, but FS identifies an increasingly large number of
outliers as the shift increases above 1.5. This outstanding performance is due to the ability to
respond to the peak in the middle of the search that was caused by a cluster of outliers that is a
feature of Fig. 1.

8. Discussion

Our results show the good size and superior power of our FS procedure. Riani et al. (2007) sup-
plement the analysis of size and simultaneous power with detailed analysis of individual data
sets. These include plots of the robust distances of Table 1 against observation number with
percentage points of both the nominal distribution of the individual statistics and of the Bon-
ferroni limit. Such plots are informative about the relationship between the various distances
and the observations that they label as outliers. Another tool is the scatter plot of robust against
non-robust distances (Rousseeuw and van Zomeren, 1990). This is informative for the banknote
data, but not for some other data structures with a less obvious structure of outliers. As the
scatter plot of the fourth and sixth variables of the banknote data in Fig. 3.52 of Atkinson et al.
(2004) shows, the 15 observations that were identified as outliers are well separated from the rest
of the data. Any plausible outlier detection procedure should be able to detect this structure.

Finally, we note that MCD-based methods require that at least half the data come from a
single normal distribution. There is, however, no such constraint on the forward search, which
starts from very small subsets of the data; outlier identification then merges seamlessly with clus-
ter detection. Atkinson and Riani (2007) illustrated the use of random-start forward searches
in exploratory clustering. We hope that the methods of the present paper will provide a basis
for the statistical modelling of this process.
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Appendix A: Numerical details

In Section 4.1 we mentioned that care is needed in evaluating the integral in equation (8) for large n as
m → n. For example, when n = 1000 and v = 10, in the final step of the search we have m = n − 1 = 999,
x2,2000;0:01 =0:01005 and F.y2000,2000;0:99/=0:9999899497. This implies that we must find the quantile of an
F -distribution with 10 and 989 degrees of freedom associated with probability 0.9999899497; in Fortran
the International Mathematical and Statistical Libraries function DFIN gave a value of 4.1985, the same
value as the S-PLUS function qf. Using this number we obtain a value of 6.512259 in equation (10).
After dividing by the consistency factor we obtain a final value of 6.520. Note that the Bonferroni value
is 6.426 and the coefficient that was obtained by Hadi using simulations is 6.511. From 30000 simulations
using Gauss the value that we obtained was 6.521, which is very close to our final value coming from the
theoretical arguments leading to equation (10).

Appendix B: The χ2
3 cumulative distribution function as a function of the

standard normal distribution

The application of standard results from probability theory shows that the variance of the truncated
normal distribution containing the central m=n portion of the full distribution is

σ2
T .m/=1− 2n

m
Φ−1

(
n+m

2n

)
φ

{
Φ−1

(
n+m

2n

)}
,

where φ.·/ and Φ.·/ are respectively the standard normal density and CDF. See, for example, Johnson
et al. (1994), pages 156–162. However, the results from elliptical truncation due to Tallis (1963) that we
used in Section 4.2 show that this variance can be written as

σ2
T .m/= n

m
Fχ2

3

{
F−1

χ2
1

(m

n

)}
:

After some algebra it appears that

F−1
χ2

1

(m

n

)
=

{
Φ−1

(
m+n

2n

)}2

,

when, rearranging terms, we easily obtain that

Fχ2
3
.x2/= m

n
−2xφ.x/

where x=Φ−1{.m+n/=2n}. This result links the CDF of the χ2
3-distribution in an unexpected way to the

density and CDF of the standard normal distribution.
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