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Abstract. The forward search is a powerful method for detecting unidentified sub-
sets and masked outliers and for determining their effect on models fitted to the
data. This paper describes a semi-automatic approach to outlier detection and clus-
tering through the forward search. Its main contribution is the development of a
novel technique for the identification of clusters of points coming from different
regression models. The method was motivated by fraud detection in foreign trade
data as reported by the Member States of the European Union. We also address
the challenging issue of selecting the number of groups. The performance of the
algorithm is shown through an application to a specific bivariate trade data set.
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Introduction

The Forward Search (FS) is a powerful general method for detecting outliers, unidentified
subsets of the data and inadequate models and for determining their effect on models
fitted to the data. The basic ideas started with the work of [11] and [1]. The power of the
FS was considerably increased by [2] and [5] through the idea of diagnostic monitoring.
They extended its applicability to a wide range of multivariate statistical techniques.
Unlike most robust methods that fit to subsets of the data (see, e.g., [14] and [12]), in the
FS the amount of data trimming is not fixed in advance, but is chosen conditionally on
the data. Many subsets of the data of increasing size are fitted in sequence and a whole
series of subsets is explored. As the subset size increases, the method of fitting moves
from very robust to highly efficient likelihood methods. The FS thus provides a data
dependent compromise between robustness and statistical efficiency.

In this contribution we describe a novel technique in which the FS is applied to
detect clusters of observations following different regression models. Our assumptions
are comparable to those underpinning latent class and model-based clustering methods
[10], but our output is richer. The rationale is that if there is only one population the
journey from fitting a few observations to all will be uneventful. But if we have two

1Corresponding Author: mriani@unipr.it or, for the anti-fraud application, domenico.perrotta@ec.europa.eu

, Anthony C. ATKINSON

Mining Massive Data Sets for Security
F. Fogelman-Soulié et al. (Eds.)
IOS Press, 2008
© 2008 IOS Press. All rights reserved.
doi:10.3233/978-1-58603-898-4-271

271



or more groups there will be a point where the stable progression of fits is interrupted.
Our tools for outlier detection and clustering are then developed from forward plots of
residuals and distances computed from searches with either robust or random starting
points. We also address a number of challenging issues, including selection of the number
of groups and use of distributional results for precise identification of the outliers and the
clusters.

Our focus is on clustering regression models. However, the ideas of clustering mul-
tivariate data are both more familiar and more easily explained, so we start in §1 with
a brief review of the FS methodology for multivariate data. Two didactic examples of
cluster detection for multivariate data are in §2. The new algorithm for detecting clusters
of regression lines is introduced in §3. In §4 we show this algorithm in action for the
purpose of detecting fraudulent transactions in trade data sets selected by the anti-fraud
office of the European Commission and its partners in the Member States. The paper
concludes in §5 with some remarks and suggestions for further development.

1. The Forward Search for Multivariate Observations

Outliers are observations that do not agree with the model that we are fitting to the
data. Single outliers are readily detected, for example in regression by plots of residuals.
However, if there are several outliers they may so affect the parameter estimates in the
fitted model that they are not readily detected and are said to be “masked". Such multiple
outliers may indicate that an incorrect model is being fitted.

The basic idea of the Forward Search is to start from a small subset of the data,
chosen robustly to exclude outliers, and to fit subsets of increasing size, in such a way
that outliers and subsets of data not following the general structure are clearly revealed
by diagnostic monitoring. With multiple groups, searches from more than one starting
point are often needed to reveal the clustering structure. In this section we restrict at-
tention to data sets of multivariate continuous observations, for which outlyingness is
measured through their Mahalanobis distances. The case of multivariate categorical data
is addressed by [8].

The squared Mahalanobis distances for a sample S(n) = {y1, . . . , yn} of n v-
dimensional observations are defined as

d2
i = {yi − μ̂}T Σ̂−1{yi − μ̂}, i = 1, . . . , n, (1)

with μ̂ = ȳ the vector of sample means and

Σ̂ =
n∑

i=i

(yi − μ̂)(yi − μ̂)T /(n − v)

the unbiased moment estimators of the mean and covariance matrix of the n observations.
Throughout T denotes transpose.

In the FS the parameters μ and Σ are estimated from a subset S(m) ⊆ S(n) of m
observations, yielding estimates μ̂(m) and Σ̂(m). From this subset we obtain n squared
Mahalanobis distances

d2
i (m) = {yi − μ̂(m)}T Σ̂−1(m){yi − μ̂(m)}, i = 1, . . . , n. (2)
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To start the search when the observations are assumed to come from a single multivariate
normal population with some outliers, [5] pick a starting subset S(m0) that excludes
any two-dimensional outliers. One search is run from this unique starting point. When a
subset S(m) of m observations is used in fitting, we order the squared distances and take
the observations corresponding to the m + 1 smallest as the new subset S(m + 1).

To detect outliers we examine the minimum Mahalanobis distance amongst obser-
vations not in the subset

dmin(m) = min di(m) for i /∈ S(m). (3)

If this observation is an outlier relative to the other m observations, its distance will be
“large” compared to the maximum Mahalanobis distance of observations in the subset.
All other observations not in the subset will, by definition, have distances greater than
dmin(m) and will therefore also be outliers.

In order to provide sensitive inferences it is necessary to augment the graph of
dmin(m) with envelopes of its distribution. Detailed examples of such envelopes and of
their use in the FS with moderate sized data sets are presented by [6] and [4]. A synthesis
is provided in the next section.

For small data sets we can use envelopes from bootstrap simulations to determine
the thresholds of our statistic during the search. These are found by performing the FS
on many sets of data simulated from a standard multivariate normal distribution with the
same value of n and v as our sample. Note that in the simulations we can use data gener-
ated from the standard normal distribution because Mahalanobis distances are invariant
to linear transformation of the data. In the example here we make 10,000 such simula-
tions. For each FS we monitor the values of dmin(m) defined in (3). As a consequence,
for each value of m we have the empirical distribution of dmin(m) under the hypothesis
of normality. The envelopes we use are the quantiles of this distribution. For example,
the 99% envelope is that value which is the 1% point of the empirical distribution. With
10,000 simulations, this is the 100th largest value, so that 99 of the simulated values are
greater than it. We calculate these quantiles for each value of m that is of interest.

For larger data sets we can instead use polynomial approximations. Theoretical ar-
guments not involving simulation are provided by [13], together with a formal test of
multivariate outlyingness and comparisons with alternative procedures.

For cluster definition, as opposed to outlier identification, several searches are
needed, the most informative being those that start in individual clusters and continue to
add observations from the cluster until all observations in that cluster have been used in
estimation. There is then a clear change in the Mahalanobis distances as units from other
clusters enter the subset used for estimation. This strategy seemingly requires that we
know the clusters, at least approximately, before running the searches. But we instead use
many searches with random starting points to provide information on cluster existence
and definition.

In §4 we use envelopes to determine cluster membership. Since the size of the clus-
ters has to be established, we need envelopes for several different values of n. Simulation
then becomes time consuming unless n is very small. Calculation of the envelopes via
the theoretical arguments in [13] become increasingly attractive as n increases.
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Figure 1. Swiss Heads data (n = 200): forward plot of minimum Mahalanobis distance with 1, 5, 50, 95 and
99% points: continuous lines, 10,000 simulations; dashed lines, interpolation. Simulations and approximation
agree well. There is no evidence of any outliers.

2. Didactic Examples

The purpose of this paper is to provide methods for the relatively large and structured data
sets that arise in the fraud detection problems illustrated in §4. However, we first look at
brief analyses of two smaller examples, as a training of the eye in the interpretation of
our forward plots for the detection of clusters.

2.1. Swiss Heads Data

The Swiss Heads data set was introduced by [9, p. 218]. It contains information on six
variables describing the dimensions of the heads of 200 twenty year old Swiss soldiers.
These data were extensively analysed, using the forward search, by [5]. The conclusion is
that the observations come from a six dimensional normal distribution, from which there
are no outliers. The plot of Figure 1 confirms this opinion. The envelopes in this figure
were found both directly by simulation from the multivariate normal distribution and
by parametric interpolation. The distances lie inside the envelopes, indicating complete
agreement with the multivariate normal distribution.

2.2. Example With Three Clusters

We now look at a synthetic example with three clusters of four-dimensional correlated
observations, to show how random start forward searches combined with envelope plots
of forward Mahalanobis distances lead to the indication of clusters. There are 1,000 units
in all, 250 of which are in the first group, 300 in the second and 450 in the third. The
observations in each group are highly correlated and the third group lies between the
other two, so that there is considerable overlapping. Of course, in our analysis we ignore
the information about group structure, or even about the number of groups.
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Figure 2. Three clusters of correlated normal variables: forward plot of minimum Mahalanobis distances from
200 random starts with 1%, 5%, 50%, 95% and 99% envelopes. Three clusters are evident.

We run 200 random start forward searches, each one starting with m0 = v + 1, the
smallest possible size and that which gives the highest probability of getting a subset con-
sisting solely of observations from one cluster. The resulting forward plot of minimum
distances is in Figure 2. The forward searches in this plot fall into four classes: those
that start in each of the three groups and those that, from the beginning of the search,
include observations from at least two groups. From around m = 150 the searches with
observations from only one group start to lie outside the envelopes. These curves reach a
peak and then suddenly dip below the envelopes as relatively remote observations from
the other groups enter the subset used in fitting. From a little after m = 500 there is a
single forward plot, in which a common mean and common covariance matrix are cal-
culated from observations in more than one group, so that the group structure is no more
apparent.

The approximate values of m at the three peaks are: 230, 290 and 450. Despite the
overlapping nature of the groups, our method has initially indicated clusters for 97% of
the observations. For precise definition of the clusters, we interrogate the subsets S(m)
for those trajectories where there is evidence of a cluster structure. The membership of
each of the three subsets giving rise to the peaks in Figure 2 can be illustrated using the
‘entry’ plot of [5]. Cluster 1 includes most of the units of Group 1 and no other units.
Cluster 2 contains the majority of the units in Group 2 and some borderline units from
Group 3. The intermediate Group 3 is the most misclassified, as is to be expected.

One way to confirm this tentative identification is to run searches on individual clus-
ters. If the peak for a particular cluster in the forward plot analogous to Figure 2 occurs
when m = nc, we include the next few units to enter and then run a search on these n+

c

units, superimposing envelopes for a sample of size n+
c as we did in §2.1 for a single

population. If no outliers are found, we have a homogenous cluster and increment n+
c

to check whether we have failed to include some units that also belong to the cluster. If
outliers are detected, we delete the last observation to enter, reduce the sample size by
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one and superimpose envelopes for this reduced sample size. Eventually we obtain the
largest group of homogenous observations containing no outliers. Examples of this pro-
cedure are given by [4], together with comparisons with other clustering methods such
as k-means which completely fails.

3. Mixtures of Regression Hyperplanes

3.1. Regression Diagnostics

The cluster analysis of multivariate data is well established as is the use of the FS to
determine the clusters, especially for data that are multivariate normal. However, the re-
gression framework is different from that of multivariate analysis and there is compar-
atively little work on clustering regression models. Here, our interest is in clustering by
regression hyperplanes. The Forward Search is easily adapted to this regression prob-
lem, keeping the same philosophy but with regression-specific ingredients. In particular,
distances are replaced by regression residuals.

We now have one univariate response Y and v explanatory variables X1, . . . , Xv

satisfying

E(yi) = β0 + β1xi1 + · · · + βvxiv (4)

with the usual assumptions of independent, additive errors of constant variance (see, for
example, [15]).

Let b be a (v + 1) vector of constants. For any b we can define n residuals

ei(b) = yi − (b0 + b1xi1 + · · · + bvxiv). (5)

The least squares estimate β̂ is the value of b in (5) that minimizes the sum of squares

R(n, b) =

n∑

i=1

e2
i (b). (6)

Likewise, the estimate β̂(m), obtained by fitting the regression hyperplane to the subset
S(m), minimizes the sum of squares R(m, b) for the m observations ∈ S(m). From this
estimate we compute n squared regression residuals

e2
i (m) = [yi − {β̂0(m) + β̂1(m)xi1 + · · · + β̂v(m)xiv}]

2 i = 1, · · · , n

the m + 1 smallest of which are used to define the new subset S(m + 1).
The search starts from an outlier-free subset of m0 = v+1 observations found using

the least median of squares criterion of [14]. We randomly take an appreciable number of
samples of size m0, perhaps 1,000, estimate b in (5) for the observations in each sample
and take as S(m0) that sample for which

M(m0, b) = mediani∈S(M0)e
2
i (b) (7)

is a minimum. In practice, [14] recommend a slight adjustment to allow for the estimation
of β.
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To detect outliers in §2 we used the minimum Mahalanobis distance among obser-
vations not in S(m). We now instead examine the minimum deletion residual amongst
observations not in the subset, which is the t test for detection of individual outliers.

Let X be the n × (v + 1) matrix of the explanatory variables X1, . . .Xv with the
addition of a column of ones for the constant term in (4). The ith row of X is xi. Then
the minimum deletion residual is defined as

rmin(m) = min
|ei(m)|

s(m)
√

[1 + xT
i {X

T (m)X(m)}−1xi]
for i /∈ S(m), (8)

where s(m) is the square root of s2(m) = R{m, β̂(m)}/{m−(v+1)}, the mean square
estimator of the residual variance σ2 = E{yi − E(yi)}

2 and X(m) is the block of X
with rows indexed by the units in S(m). The quantity hi = xT

i {X
T (m)X(m)}−1xi is

the “leverage” of observation i. Observations with large values of hi are remote in the
space of the explanatory variables and can, as we shall see in Figures 4 and 5, cause
perturbations in forward plots when they join S(m).

The FS for regression is given book-length treatment by [2]. Inferences about the
existence of outliers require envelopes of the distribution of rmin(m), similar to those
plotted in §2. Such envelopes are described by [3].

3.2. A Forward Algorithm for Clustering Observations Along Regression Hyperplanes

We now suppose that the observations come from g regressions models (2) with different
and unknown parameter values. Our aim is to allocate each unit to its true model and to
estimate the corresponding parameters. Also the number g of component models is not
known in advance.

Clusterwise regression is the traditional technique for achieving this goal [16]. A
more modern probabilistic approach is to fit the joint density of the n observations as
a mixture of regressions models [7, §14.5]. However, both methods may suffer from
the presence of outliers and/or strongly overlapping clusters. Another shortcoming of
these methods is that they do not provide formal tests to justify the need of an additional
component. Our proposal is to use the Forward Search for determining and fitting the g
components of the regression mixture.

Our forward algorithm combines the strategies outlined in Sections 1 and 3.1. It
consists of the following steps:

1. Let n∗(j) be the size of the sample to be analysed at iteration j. At the first
iteration n∗(1) = n;

2. The FS for regression is applied to these n∗(j) observations. The search is ini-
tialised robustly through the least median of squares criterion applied to all n
observations and progresses using the squared regression residuals e2

i (m), i =
1, . . . , n∗(j);

3. At each step m of the FS, we test the null hypothesis that there are no outliers
among the n∗(j) observations. The test is performed using the minimum deletion
residual (8);

4. If the sequence of tests performed in Step 3 does not lead to the identification of
any outliers, the sample of n∗(j) observations is declared to be homogeneous and
the algorithm stops by fitting the regression model (4) to this sample. Otherwise
go to Step 5;
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5. Let m∗ be the step of the FS in which the null hypothesis of no outliers is rejected
by the sequence of tests of step 3. Then the observations in S(m∗) identify one
mixture component, i.e. one cluster of m∗ observations following (4). Fit the
regression model (4) to this cluster;

6. Remove the cluster identified in step 5. Return to Step 1 with a reduced sample
size, by setting n∗(j + 1) = n∗(j) − m∗.

The algorithm leads to the identification of g regression models, one for each itera-
tion. The tests performed in step 3 ensure that each component of the mixture is fitted to
a homogeneous subset. The tests are robust and are not influenced by outliers or by ob-
servations falling between the groups. Indeed, such observations, which are relevant for
fraud detection, are clearly revealed by our forward diagnostic plots during the search.
Note also that the method does not force all observations to be firmly clustered into one
of the g components. Borderline units are recognized as intermediate between clusters
and can thus be inspected separately.

4. Application to European Union Trade Data and Anti-fraud

In this Section we show how the FS can be used with European Union (EU) foreign
trade data as reported by the EU Member States (MS) to detect anomalies of various
kinds (e.g. recording errors), specific market price dynamics (e.g. discounts in trading big
quantities of product) and cases of unfair competition or fraud. In particular fraud may
be associated with anomalously low reported prices that could result in underpayment of
taxes.

We use one concrete example to introduce the application context, the data and the
statistical patterns of interest, i.e. outliers and mixtures of linear models. The European
Commission’s Joint Research Centre detects these patterns in data sets including mil-
lions of trade flows grouped in a large number of small to moderate size samples. The
statistically relevant cases are presented for evaluation and feed-back to subject matter
experts of the anti-fraud office of the European Commission and its partner services in
the Member States.

We use the example to illustrate the regression approach introduced in Sections 3.
The method of multivariate clustering of 1 is not informative when the data have a re-
gression structure, so we do not consider it any further for this example.

4.1. European Union Trade Data

The data in Figure 3 refer to the quantity (x axis) and the value (y axis) of the monthly
import flows of a fishery product into the European Union from a certain third country.
The solid dots are the flows to a Member State that we call MS7, and the black circles are
the flows to other Member States. We can clearly see that the two groups of observations
are distinct and we could fit two linear regression models using the observations in the
two groups. We use the slope of these linear models as an estimate of the import price of
the flows in the respective groups.

There is also an observation, the open circle on the bottom-left, that does not follow
the regression line fitted to the observations of the same category. Rather, it appears in the
distribution of the solid dots. This “abnormal” black circle is a single flow to a Member
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Figure 3. Quantities (in tons) and values (in thousands of euros) of 677 monthly imports of a fishery product
from a third country into the EU, over a period of three years. Flows to MS7 (solid dots) and flows to the other
Member States (open circles) form distinct groups following different regression lines. On the bottom-left an
abnormal single flow to MS11.

State that we identify as MS11. The unit value of this flow, obtained by dividing the
value by the corresponding quantity, is so small (∼ 1.27e/Kg) compared to the market
price of this specific fishery product (12.5e/Kg in 20052) that we may suspect an error
in recording the data. Although from a data quality point of view it might be worth
investigating the validity of this data record, from the economical point of view we are
unlikely to be interested in a trade flow of such volume (∼ 20 Tons).

Much more importantly, the distribution of the solid dots indicates that the imports of
MS7 are systematically underpriced in comparison with the imports of the other Member
States. This indication is of appreciable economic relevance since MS7 imported about
20% (∼ 3300 Tons) of the total EU imports of this product in our reference period.

Our data sets consist of thousands of samples similar to this example. Therefore we
need to detect the outliers and to estimate the mixtures of linear components automati-
cally and efficiently. We require high computational and statistical efficiency of the algo-
rithms; they should detect a manageable number of outliers in reasonable time and with
reasonable statistical power. But, for the anti-fraud subject matter experts, the concept of
efficiency is also related to the problem of extracting cases of possible operational inter-
est from the statistically relevant patterns that we detect with our algorithms. We will not
address this issue here.

2Source: “European Fish Price Report”, a GLOBEFISH publication (http://www.globefish.org).
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4.2. Fitting Mixtures of Regression Lines

Our data have a clear regression structure (Figure 3) and we propose now to analyse
them with the regression approach of Section 3.1. This approach uses the squared regres-
sion residuals for progression in the search and the minimum deletion residual among
the observations not in the subset to monitor the search and infer departures from lin-
earity. We show that the iterative application of this approach, detailed in Section 3.2,
suggests modelling the data with a mixture of at least four linear components of rather
clear interpretability by subject-matter experts.

The initial subset is chosen by robust fitting, using the least median of squares (LMS)
criterion. The first iteration leads relatively straightforwardly to the identification of a
first linear regression component with 344 homogeneous observations. In accordance
with our algorithm, we remove these observations from the data and repeat the procedure
on the remaining 333 observations. We describe the second iteration in greater detail.

Figure 4 shows the forward plot of minimum deletion residuals for these 333 obser-
vations. Clearly they are not homogeneous, but the question for this iteration is where is
the end of the major group? There is a sharp dip in the plot at around m = 120 caused
by the inclusion in S(m) of a unit with high leverage. Otherwise, we first obtain a signal
indicative of model failure at m = 225, the first point at which the calculated minimum
deletion residual lies above the 99.9% envelope. However, as the plotted envelopes show,
we can expect larger values of the residual as m approaches n even when there are no
outliers; the value of n for this group may be somewhat larger than 225. Indeed this does
seem to be the case.

The upper left-hand panel of Figure 5 shows the envelopes for n = 225, together
with the deletion residuals up to this sample size. With these new, more curved, en-
velopes it is clear that the group is homogeneous up to this size. The same is true for
the upper right-hand panel for n = 235. However, in the lower left-hand panel with
n = 245, the observed values have already crossed the 99% envelope. For n = 248 the
99.9% envelope is crossed, so there is evidence of non-homogeneity. When n is one less,
namely 247, there is no exceedance and we take the second component as containing 247
observations.

There are two points about this process. The minor one is that the envelopes are
recalculated for each panel but the calculated values of the minimum deletion residuals
are from the search plotted in Figure 4; as n increases the plots reveal more of this
sequence of values. The major point is that the envelopes we have found have the stated
probability, but for each m. Thus the probability of exceeding the 99.9% envelope for any
m is 0.1%. However, the probability that the 99.9% envelope is exceeded at least once
during a search is much greater than 0.1%. The calculations for regression are in [3].
Here the envelopes are much more like 99% overall, which is a more reasonable level at
which to detect a change in structure. However, in our application, the exact significance
level of this part of our analysis is not crucial.

The procedure of identification and deletion continues for another three iterations,
leading to additional homogeneous populations of 247, 38 and 22 observations. Figure 6
shows the four components of the mixture estimated with this procedure and the remain-
ing 26 observations (the ‘+’ symbols).

The slopes of the four mixture components, from 1 to 4, are: 14.044, 12.542, 13.134
and 5.83. We recall that these values are estimates of the import price of the flows as-
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Figure 4. Fisheries data: the 333 observations in iteration 2. Forward plot of minimum deletion residuals with
1, 50, 99, 99.9 and 99.99% envelopes. There is a signal at step 225.
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Figure 5. Fisheries data: the 333 observations in iteration 2. Forward plot of minimum deletion residuals with
1, 99, 99.9 and 99.99% envelopes for various sample sizes. Iteration 2 identifies a group of 247 observations.
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Figure 6. Fisheries data: a mixture of four linear regression lines estimated by iterating the FS on the 677 EU
import flows in the dataset. The “residual” flows are identified with a ‘+’ symbol. Those marked with their
record number, 212, 47, are detected as outliers by a final FS on the residual flows.

signed by the FS to the four groups. Interestingly, we have verified in our dataset that
the group fitted by component 4 (estimated import price 5.83e) is exclusively formed by
import flows to MS7 that took place in 22 consecutive months. In addition, there are no
flows to MS7 in the other three groups.

Since the prices, that is the slopes of the regression lines, are the major output of our
analysis, we give in Figure 7 the forward plots of the estimated slopes during the forward
searches for the different iterations. That for the 344 in group 1 is amazingly stable. That
for group 2 is also stable, although it does show some slight fluctuations, as well as a
small jump around m = 120 that we noticed in Figure 3. The much smaller group 3 has a
slope between groups 2 and 3. As our other analyses have shown, the slope for group 4 is
markedly different. All of these slopes are sensibly constant during the search. However,
that for the residual group decreases rapidly, suggesting that these 26 observations are
far from homogeneous.

Information on the degree of homogeneity of the observations in the groups can be
also obtained from a plot of the estimates of the squared correlation coefficient R2 in
the five iterations (for the general definition of R2 see, for instance, [15]). This is shown
in Figure 8, which also reflects the high strength of the linear regression fit in the four
groups.

At this point we accordingly ran the FS also on the 26 “residual” observations.
Among those entering the subset in the last steps, two are detected as outliers and cause a
visible increase in the plot of deletion residuals. In fact Figure 6 shows that one of these
observations, record number 47 in the original dataset, appears almost in line with the
first mixture component while the other, 212, is virtually in line with the fourth compo-
nent.
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Figure 7. Fisheries data: forward plot of estimated regression coefficients in the five iterations. The first and
second groups are very stable with coefficients approximately twice that for the suspicious Group 4.
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Figure 8. Fisheries data: forward plot of the estimates of the squared correlation coefficient R2 in the five
iterations. The strength of the linear regression fit in the four groups is high.

We now consider in more detail the composition of the residual observations, which
are plotted in Figure 9. We represent the flows to MS7 with open circles and the flows to
the other Member States with solid dots. The dashed line fits the flows to MS7 but ex-
cludes 212 since, as we have just remarked, it is very close to the fourth component. The
slope of this line is 7.66. Again this group of 13 flows to MS7 took place in consecutive
months. Among the other 11 residual flows, 7 refer to a single Member State, MS2.
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Figure 9. Fisheries data: zoom of the residual flows marked with a ‘+’ in Figure 6. The open circles are the
flows to MS7. The solid dots are the flows to other Member States. Again, the two outlying flows are labelled
with their record numbers. The regression line is fitted using the flows to MS7 excluding 212, which is outlying.

4.3. Implications for Anti-fraud

The flows to MS7 have been clustered into two homogeneous groups: the first which
we called component 4 and the second a fitted subset of the residual observations. His-
torically, the flows in the first of these two groups took place after those in the second.
The estimated import prices for the two periods are considerably different: 5.83e and
7.66e, and also considerably lower than the prices estimated for the other groups and
Member States, 14.05e, 12.54e and 13.13e. In short, in the period analysed, MS7 low-
ered the import price of this fishery product, up to half of the import price reported by
the other Member States. In earlier analyses this type of pattern was not considered. Its
operational evaluation, for example in relation to possible evasion of import duties, is the
responsibility of the anti-fraud services.

5. Discussion and Directions for Further Work

The procedure of Section 3.2 indicated four clear sub-populations. A limitation of the
procedure is the lack of a criterion to decide automatically about the nature of the residual
flows: some of them may form separate homogeneous groups, others are very close to
existing groups and could be re-assigned (e.g. flows 47, 212) and yet others may be
outliers in the entire dataset (e.g. flow 355). In fact, we have used a rather pragmatic
approach to the analysis of the residual observations. A confirmatory analysis invoking
simultaneous searches including all established regression lines (not given here for lack
of space) can help to infer the degree to which each unit belongs to each group.
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The focus in this example has been on clustering linear regression models with moti-
vation for the FS coming from the clustering of multivariate data. We would like to stress
that the FS is of much wider applicability; examples, not all in [2], include applications
to multiple and curvilinear regression, to nonlinear and generalized linear models and to
the estimation of response transformations in regression and data transformation in mul-
tivariate analysis. Given any quantity of interest, such as a parameter estimate or a test
of departures from a model, its properties can be studied using the FS. The distributional
properties of the quantity can be found, often by simulation. Any significant departure
from this distribution may indicate outliers, ignored structure or a systematically inade-
quate model, depending on the quantity being studied. In our anti-fraud application we
require techniques for large numbers of observations. For the very large data sets en-
countered in “data-mining” we use a FS in which s > 1 units enter at each forward step;
thus we move directly from the subset S(m) to the subset S(m + s).
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