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The Modeling and Seasonal Adjustment of 

Weekly Observations 
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Several important economic time series are recorded on a particular day every week. Seasonal 
adjustment of such series is difficult because the number of weeks varies between 52 and 53 and 
the position of the recording day changes from year to year. In addition certain festivals, most 
notably Easter, take place at different times according to the year. This article presents a solution 
to problems of this kind by setting up a structural time series model that allows the seasonal 
pattern to evolve over time and enables trend extraction and seasonal adjustment to be carried out 
by means of state-space filtering and smoothing algorithms. The method is illustrated with a Bank 
of England series on the money supply. 

KEY WORDS: Calendar effects; Irregularly spaced observations; Kalman filter; Money supply; 
Moving festival; Periodic spline; Stochastic seasonality; Structural time 
series model. 

The weekly figures on the U.K. money supply are eagerly 
anticipated in the City of London because they are believed 
to be an important economic indicator. One of the key series 
is the value of the Bank of England notes and coins in 
circulation, plus cash deposits of commercial banks with the 
Bank of England. This basically corresponds to the measure 
known as MO, and we will refer to it in this way hereafter. 
These figures display considerable seasonal fluctuations and 
are particularly high just before Christmas. As a result there 
is a need for the Bank of England to produce a seasonally 
adjusted series for ease of interpretation. 

Figure 1 shows a plot of the logarithms of the obser- 
vations on MO starting on May 28, 1969. Taking loga- 
rithms yields a series with a more stable seasonal pattern. 
The figures are recorded every Wednesday, except when 
the Wednesday falls on a public holiday, in which case 
the figure is recorded on the previous Tuesday (or Mon- 
day if Tuesday is also a holiday). The Christmas peak can 
be clearly seen and, as with many economic time series, it 
is apparent that the seasonal pattern has evolved over time 
due to changing institutional and social factors. An excel- 
lent discussion of the changing nature of Christmas and its 
consequent economic impact is that of Scott (1995). 

Modeling a changing seasonal component is relatively 
easy for quarterly and monthly observations, the seasonal 
component normally being combined with a stochastic 
trend and an irregular term. This is either done explicitly, 
as in the structural time series modeling approach, or im- 
plicitly, as in the autoregressive integrated moving average 
(ARIMA) approach. In the latter case, the seasonal compo- 
nent is specified by means of a "canonical decomposition" 
as shown by Hillmer and Tiao (1982). The seasonal compo- 
nent can be extracted by a state-space smoothing algorithm; 

see, for example, Kitagawa and Gersch (1984) or Harvey 
(1989). Carrying out such model-based seasonal adjustment, 
using either approach, has considerable attractions because 
the procedure adapts to the particular characteristics of the 
series involved. The relationship between the model-based 
procedures and the widely used Bureau of the Census X-11 
program was discussed by Maravall (1985). 

Seasonal adjustment of weekly data is not an easy task. 
The first problem is that, because the observations are nor- 
mally recorded on a particular day of the week rather than 
on predetermined dates, the fact that there is not an inte- 
gral number of weeks in the year means that the number 
of observations in the year varies between 52 and 53. Thus, 
even if the seasonal pattern were deterministic, it could not 
be modeled by a set of dummy variables. Furthermore, the 
position of the dates of the observation days changes with 
each year so that even with an integral number of weeks 
in the year the seasonal pattern would change from year to 
year. It makes a big difference, for example, if the money- 
supply figure is recorded on the day before Christmas or six 
days before Christmas. (The former case arises if Christmas 
is on a Thursday, the latter if it is on a Tuesday.) To make 
matters worse, these differing seasonal patterns do not even 
recur every seven years because of leap years. 

The other major problem is that the position of Easter 
changes from year to year. Furthermore, its effect can be 
different depending on when it occurs. If it is late, its ef- 
fects can overlap, and possibly interact with, those asso- 
ciated with the May Day public holiday. Of course, the 
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position of Easter also affects models for monthly observa- 
tions, but in this case it is more easily handled, and there 
is a considerable literature on its treatment; see Bell and 
Hillmer (1983). 

The ARIMA-based procedure does not easily generalize 
to weekly data. One of the few published articles on weekly 
model-based seasonal adjustment, that by Pierce, Grupe, 
and Cleveland (1984), got around some of the problems by 
using regression to model some of the seasonal effects in 
a deterministic way and then grafting on stochastic effects 
using an ARIMA model. Our approach is to attack the prob- 
lem using structural time series models. Such models can 
be interpreted as regressions on functions of time in which 
the parameters are time-varying. This makes them a natu- 
ral vehicle for handling changing seasonality of a complex 
form. Once a suitable model has been fitted, the seasonal 
component can be extracted by a smoothing algorithm. 

The plan of the article is as follows. Section 1 briefly 
reviews the basic structural model as it is typically used for 
quarterly and monthly data and explains why it cannot be 
directly applied to weekly data. Sections 2 and 3 describe 
the two seasonal components that we propose introducing 
into a structural model to allow it to cope with weekly data, 
and Section 4 explains how the model is handled statisti- 
cally. The model is applied to the Bank of England money- 
supply data in Section 5. Section 6 presents the conclusions. 

1. THE BASIC STRUCTURAL TIME SERIES MODEL 

The basic structural model (BSM) is formulated in terms 
of trend, seasonal, and irregular components. All are as- 
sumed to be stochastic and driven by serially independent 

Gaussian disturbances that are mutually independent. If 
there are s seasons in the year, the model is 

Yt = At + 't + Et, t I E NID(0, cr), (1.1) 

where the trend, seasonal, and irregular are denoted by 
/it, yt, and et, respectively. 

The trend is specified in the following way: 

It = At--1 + t-1 + ?It, r-d NID(O, cr2), 

Ot = t-1 + t, Ct 
. NID(0,a( ), (1.2) 

where [t is the level and Ot is the slope. The disturbances 

,qt and (t are assumed to be mutually independent. Setting 
a 2= 0 gives a trend that is relatively smooth. 

The seasonal component is usually set up in terms of 
stochastic trigonometric functions at the s/2 seasonal fre- 
quencies, although dummy-variable formulations are also 
possible. The key point is that, although the seasonal com- 
ponent is nonstationary, it has the property that the expected 
value of the sum over the previous s time periods is 0. This 
ensures that seasonal effects are not confounded with the 
trend. It also means that the forecasts of the seasonal com- 
ponent will sum to 0 over any one-year period. 

The statistical treatment of the model is based on the 
state-space form, with s + 1 elements in the state vector. Es- 
timation, forecasting, and signal extraction are carried out 
by means of the Kalman filter and associated algorithms. 

1.1 Trigonometric Seasonality 
The trigonometric form of stochastic seasonality used in 
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models of the form (1.1) with s seasons in the year is 

[s/2] 

7t= Eyj,t, t= 1,..., T, (1.3) 
j=1 

where each Yj,t is generated by 

F, cos Aj sin Aj j,t-11 + (1.4) 
7j*,t - sin Aj cos Aj yjt-- ]J Lo,t 

where Aj = 27rj/s is frequency, in radians, for j = 
1,..., [s/2] and wt and w* are two mutually uncorrelated 
white-noise disturbances with zero means and common 
variance acr. For s even, [s/2] = s/2, but for s odd, 
[s/2] = (s - 1)/2. Note that -y,t is redundant for j = s/2. 

The BSM consisting of the stochastic trend in (1.2) 
combined with trigonometric seasonality is easily put in 
state-space form by defining the (s + 1) x 1 state vector 
at = (i-i 1t, /1t, 71t, 72t, Y7t . . .)'. The measurement equa- 
tion is then 

Yt = (1, 0, zt)at + Et, (1.5) 

where z' = (1, 0, 1, 0....). If the Kalman filter is initiated 
with a diffuse prior, as shown by De Jong (1991), an estima- 
tor of the state with a proper prior is effectively constructed 
from the first s + 1 observations. 

1.2 Dummy-Variable Seasonality 
The form of dummy-variable seasonality relevant to the 

development later in the article is one in which each ele- 
ment in an s x 1 vector yt represents the effect of a partic- 
ular month and these effects sum to 0; see Harvey (1989, 
pp. 40-41) for a discussion of different types of dummy- 
variable seasonality. The effects evolve over time according 
to a multivariate random walk 

"^tt = t-1i + Xt, (1.6) 

where Xt is an s x 1 vector of serially uncorrelated random 
disturbances with zero mean. The zero sum over the year 
constraint implies restrictions on the covariance matrix of 
disturbances. Specifically 

var(Xt) = or(I - (1/s)ii'), (1.7) 

where c2 is the variance parameter that governs the speed 
with which the seasonal pattern can change and i is an s x 1 
vector of ones. This covariance matrix enforces the con- 
straint that i'Xt = 0 by making its variance 0. Thus, if 
i'/t_ = 0, then i'yt = 0. 

One of the elements of 7t can be dropped from Equation 
(1.6); it can always be recovered as minus the sum of the 
elements remaining. The state-space form of a BSM with 
this kind of seasonality is such that s - 1 elements of yt 
appear in the state vector and the measurement equation is 
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as in (1.5) with zt being an (s - 1) x 1 vector that yields 
the effect of the current month. Thus if the sth element 
of yt has been dropped from the state vector, zt has a 1 in 
position j for month j, j = 1,..., s-1, and zeros elsewhere, 
and all elements equal to -1 for month s. 

1.3 Weekly Data 

The features of weekly data noted in the first section 
mean that the preceding approach cannot be applied di- 
rectly. Our solution, like that of Pierce et al. (1984), is to 
model the seasonal pattern using two components. The first 
component is a function of the date in the year--that is, 
the number of days that have passed in the year. Thus, for 
example, it takes a particular value on day 358 (which hap- 
pens to be Christmas Eve). The second component is a col- 
lection of effects associated with public holidays, such as 
Easter, that take place on different dates in different years 
but always fall on the same day of the week. Once these 
components have been specified as deterministic effects so 
that they could be handled by regression, it is straightfor- 
ward to allow them to evolve stochastically over time by 
casting the whole model in state-space form. This is a con- 

Table 1. Estimates of Hyperparameters 

Model q( qv, qx 2 

Constant periodic variance .0149 .0052 .0483 947 x 10-8 
Doubled at Christmas .0109 .0063 .0401 794 x 10-8 

siderable advantage over the approach adopted by Pierce 
et al. (1984) in which a stochastic ARIMA component is 
added to a regression component with no clear connection 
between the two. 

In what follows, we will refer to the first seasonal ef- 
fect, 7t, as the periodic component and to the second, Ot, 
as the moving festival component. It is possible to include 
an additional periodic component if there is a significant 
intramonthly effect. 

Although our model is formulated on a daily basis, we 
could go further and set up the evolution of the parameters 
in continuous time. This is quite natural because the pe- 
riodic component is a continuous function. Although con- 
tinuous time is an elegant approach, it makes little or no 
difference to the form of the implied weekly models, how- 
ever, and its use in the present context should be clear from 
the general discussion of Harvey (1989, chap. 9). 

2. PERIODIC EFFECTS 

We wish to model the yearly pattern on a daily basis. For 
the moment, we will assume that there are no leap years, 
so each year has 365 days. 

The periodic component will be modeled as a linear func- 
tion of a set of parameters contained in a g x 1 vector y. 
If these parameters are fixed, the periodic pattern is fixed, 
and we may write the periodic effect for the dth day in the 
year as 

Yd = z'Y, d = 1,...,365, (2.1) 
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Table 2. Final State Vector 

Description State Estimate t ratio 

Level slope /T 9.7814 2,521 
.T .0012 1.50 

Moving-festival dummies 01, T .0122 4.84 

02,T .0249 9.80 
03,T .0058 2.31 
04, T .0120 5.04 

05, T .0224 9.22 
06, T .0034 1.39 
07,T .0188 7.45 

08,T .0079 3.09 

09,T .0360 13.9 

010,T .0368 14.1 
011,T .0043 1.66 

Coefficients of knots Y1 , T .0574 13.3 
""2,T .0131 3.48 
"Y3,T -.0200 -7.33 
"Y4,T -.0336 -9.82 
"Y5, T -.0281 -6.50 

"Y6, T -.0189 -4.45 
"Y7,T -.0025 -.68 
"Y8, T .0054 1.36 
"Y9,T .0177 4.90 

"Y10, T .0034 .92 
"Y11,T -.0013 -.34 
"Y12, T -.0068 -1.78 

"Y13,T -.0051 -1.38 
"Y14,)T .0007 .20 
"Y15, T .0298 7.71 
" Y16,T .0540 13.8 

"Y17, T .1040 25.1 
"Y18,T .1058 13.7 

Silver Jubilee OT .0122 7.57 

where Zd is a g x 1 vector of known values. The idea is to 
specify (2.1) so as to have g reasonably small-one hopes 
much less than 52. There are essentially two options. The 
first is to let Yd be a mixture of trigonometric functions. The 
second is to model it by a periodic spline. In our application 
the second option seems to offer more scope for a parsimo- 
nious parameterization, mainly because of the need to cap- 
ture the sharp peak at Christmas. The important point, how- 
ever, is that both approaches can be generalized to allow the 
seasonal pattern to evolve over time by letting ' be stochas- 
tic. Stochastic trigonometric seasonals have long been a part 
of structural time series modeling methods. Stochastic, or 
time-varying, periodic splines were first used by Harvey and 
Koopman (1993) to model intraweekly patterns of hourly 
electricity demand. 

Further scope for cutting down on the number of param- 
eters may be afforded if there is an intramonthly pattern. 
Again either trigonometric terms or splines may be used. 

2.1 Trigonometric Seasonality 

A fixed annual pattern may be represented by a trigono- 
metric model as follows: 

k 

Y= = (yj cosAjd+ y sinAjd), d= 1,...,365, (2.2) 
j=1 

where Aj = 27rj/365. To include the full set of trigono- 
metric terms, as is normally the case with a monthly or 

quarterly model, would mean setting k = 182. Pierce et 
al. (1984) found, however, that setting k = 8 is perfectly 
adequate when combined with intramonthly effects. 

Now suppose that the periodic pattern changes over time 
on a daily basis, irrespective of whether there has been an 
observation. Each trigonometric component now evolves as 
in (1.3) and (1.4) with the AXj's specified as in (2.2) and the 
subscript t denoting the seasonal effect on the tth day from 
the beginning of the sample. Thus the model is modified to 

[s/z] 

7t = y j,t, t = 1, 2, ..., Td, 
j=1 

where Td denotes the number of days covered by the sample 
period. When a2 = 0, the deterministic model is obtained. 

2.2 Periodic Time-Varying Splines 
To set up a spline we need to choose h knots in the range 

[0, 365]. Then 

Yd = wYt, d = 1, ..., 365, (2.3) 

where Wd is an h x 1 vector that depends on the position of 
the knots and is defined in such a way as to ensure conti- 
nuity of the spline from one year to the next-that is, make 
it periodic; see the Appendix and Poirier (1976, pp. 43-47). 
To have the periodic seasonal effects summing to 0 over the 
year, one of the elements in yt, say the last one, is dropped. 
Then, in terms of the formulation in (2.1), -y consists of the 
first g = h - 1 elements of -yt, and the ith element in Zd is 
given by 

Zdi = Wdi - WdhW*i/W*h, 

i=1,...,g, d=1,...,365, (2.4) 

where wj is the ith element of the vector 

365 

w, = Wd. (2.5) 
d=l 

Note that it is the effects summed over all the days in the 
year that come to 0 rather than the effects summed over the 
particular days when there are observations. (If we want to 
regard d as continuous, then w, is an integral; this can be 
evaluated in practice by summing over many points or by 
using the formula at the end of Appendix A.) 

The splines can be allowed to evolve over time by letting 
the parameters follow random walks. If we assume that the 
parameters change every day, irrespective of whether or not 
there is an observation, we may write 

3tt t-1 + Xt, t = 1, 2,..., Td, (2.6) 

where Xt is an h x 1 vector of serially uncorrelated random 
disturbances with zero mean and covariance matrix 

var(Xt) = 2 (I - (1/w w,)w w'), (2.7) 

where a2 is the variance parameter that governs the speed 
with which the spline can change. This covariance matrix 



Harvey, Koopman, and Riani: Modeling and Seasonal Adjustment of Weekly Observations 359 

o 

002101 1 1 10101 1 1611101 12181210 11111010 112 91 I ]1102 200121 911010 0711109 1 1112 1 121 2 2901oi 

no 

cy; 

• • 

SI1. I11.1.1I.1.1.11.1.1. III 
. I I 

lI.III.II. .L. .'.'..I.'. .I. ..I.I........ . .I.II. I.I. 
. 

I.I.. I. 
I . 

l. 
.. 

l.l.l 

012802 0404 0905 1306 1807 2208 2609 3110 0512 0901 1302 2003 2404 2905 03006 0708 1109 1610 2011 2412 2901 

0E 

cq 

cn 

CY) 
00 

. . . . . . . . . . . . . . . I . . . . . . . . I 

r-!. 

Fiue4 mohdEtmt fTed 

enforces the constraint that wxt = 0. Note that, if there 
is a knot for each day, the seasonal dummy model of (1.6) 
is obtained with h = s and w, = i. 

As before, one of the elements of ^lt can be dropped to 
give a g x 1 vector "yt. The effect in the tth day from the 
beginning of the sample is then 

t 
= 

t(d)t^ 
t = 1•, ..., ,Td 

where the notation t(d) for the subscript of z stresses de- 
pendence on the day of the year. 

In some circumstances, a part of the periodic pattern may 
change more rapidly than the rest of the pattern. For money 
demand, this seems to be the case with the Christmas effect. 
This phenomenon can be modeled by letting the parameters 
at the knots close to the points at which rapid changes take 
place be subject to relatively larger disturbances. Thus, sup- 
pose that the first m elements in 7vy have associated with 
them a variance of a , and the second n = h - m have a 
larger variance, an. The covariance matrix of Xt then be- 
comes 

var(xt) = o[Im 0 
[ +n J] 

1 F 2WmW (2 )wm 1 (O 2 (22 f S+a fT)wnw' a2 o wnW 

(2.8) 

where Wm consists of the first m elements of w, and w, 
contains the last n; that is, w, = (w', w')'. This additional 
flexibility is an attractive feature of the spline formulation. 
Again, w'xt = 0. 

2.3 Intramonthly Effects 

Pierce et al. (1984) observed significant intramonthly ef- 
fects in U.S. monetary aggregates, primarily due to the 
higher money supply toward the end of the month when 
wages are paid. Such effects were captured by the inclu- 
sion of trigonometric terms as in (2.2) but with d denoting 
the day of the month and 365 replaced by the number of 
days in the month. An intramonthly pattern of this form 
can be made time-varying exactly as in Subsection 2.1. 
An additional hyperparameter is needed to fulfil the role 
of aw2 

It is only worth using intramonthly effects if most of 
the months display a similar pattern. This may well be a 
reasonable assumption for monetary aggregates, although 
December may be different if people tend to be paid before 
the Christmas break. 

Intramonthly effects can also be modeled by a time- 
varying periodic spline. A trigonometric intramonthly com- 
ponent can be used together with an intrayearly spline and 
vice versa. 

2.4 Leap Years 

There are two ways to handle leap years. The first is 
to set the periodic effect for February 29 the same as for 
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Figure 5. Smoothed Periodic Component Over the Last Four Years, Starting in February 1990, With Position of Knots (e). 

February 28--that is, to regard day 59 as occurring twice. 
By proceeding in this way we ensure that Christmas falls 
at exactly the same point every year--that is, day 359. 
Note that day 59 must be counted twice in the summation 
in (2.5). 

A slightly different approach is to let the leap-year effect 
be spread throughout the whole year. For the trigonometric 
model, this is easily accomplished by replacing 365 by 366 
in the Ai's. For the spline, we modify Wd, and hence Zt(d), 

by multiplying the knot positions by 366/365. 

3. MOVING FESTIVALS: 
VARIABLE-DUMMY EFFECTS 

The effect of each public holiday may be modeled by a 
set of dummy variables that are assigned to the surrounding 
weeks. The day of the year on which the holiday falls, and 
hence the days on which the surrounding observations fall, 
depends on the calendar. 

Suppose that m dummy variables are used to pick up 
public-holiday effects. Each effect takes up seven days. 
Thus the number of days remaining is, averaging over four 
years, 

km+l = 365.25 - 7m. (3.1) 

These days must be allocated an effect to counterbalance the 
effect of the public holidays, thereby making the component 
sum to 0. Averaging over four years avoids a slight end- 
of-year discontinuity associated with leap years. Thus, if 

01,..., 0m denote the holiday effects, the nonholiday factor 

must be 

0m+1 
= -(81 +-- 

..' 
+ Om)7/km+l. (3.2) 

To allow the dummy-variable effects to evolve over time, 
we let them follow constrained random walks as in Subsec- 
tion 2.4. There is no need to include 0m+1 because it may 
be inferred from (3.2). Thus, following the treatment of the 
daily-effects model as set out by Harvey (1989, pp. 43-44), 

Ojt = Oj,t-1- + vjt,j = 1,..., m, t = 1,..., Td, (3.3) 

where vjt is a zero mean, serially uncorrelated disturbance 
with variance 

var(vj) = 2 
(1 - 49/K), j = 1, .. ,m, (3.4) 

where K = 49m + km+12 The covariances between distur- 
bances are given by 

cov(vjvt) = -ov49/K, j, 1= 1,..., m. (3.5) 

The model may be generalized to allow some effects to 
change more rapidly by giving them a larger variance. 

4. STATISTICAL TREATMENT OF THE MODEL 

The full daily model is 

Yt = At + --t + Ot $+ Et, t = 1, 2,..., Td, (4.1) 
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Figure 6. Smoothed Moving-Festival Component Over the Last Four Years, Starting in July 1989. 

with the trend defined as in (1.2) and 7t and Ot denoting 
the periodic and moving-festival effects. The irregular term, 
et, is assumed to be white noise, and the disturbances in 
the different components are uncorrelated with each other. 
The model is easily put into state-space form by letting the 
state vector be at = (pt, /t, 7It, 0')'. The transition equation 
is made up of (1.2), (2.6), and (3.3), and the measurement 
equation is 

Yt = (1, 0, t(d), x(c))at + et, t = 1, ...,Td, (4.2) 

where Zt(d) depends on the number of days that have passed 
in the year and xt(c) depends on the calendar. The role of 
xt(c) is to pick out from the variable dummy vector, O6, the 
appropriate element or elements if there is no direct holiday 
effect and (3.2) is relevant. 

The preceding formulation is independent of the observa- 
tions. These can be weekly, which is the focus of attention 
here, or they can arrive on various days with no particular 
pattern. When there is no observation on a particular day, 
the Kalman filter simply treats it as a missing observation: 
There is no difficulty in carrying out prediction, smoothing, 
and estimation. The hyperparameters-that is, the variances 
of the disturbances--can be estimated by maximizing the 
(exact) log-likelihood function computed via the Kalman fil- 
ter using the prediction error decomposition; see Appendix 
B. The use of a "square root" filter is recommended because 
it appears to be much more stable for weekly data. Numer- 

ical optimization needs to be carried out with respect to the 
hyperparameters relative to the variance of the irregular, 
which can be concentrated out of the likelihood function. 

With weekly data, the observations are, for the most part, 
equally spaced. It is therefore more efficient to convert the 
model to a weekly basis. If y, denotes the observation in 
week 7 of the sample, we can write y, = wT, + Y, + 0-, + 
Er, 7- = 1,2,... ,T, and the transition equation is modified 
appropriately. For parameters evolving according to random 
walks, as in (2.6) and (3.3), all that needs to be done is 
to observe that the variance for a weekly model will be 
seven times the variance for a daily model. For the local 
linear trend, the modification to the covariance matrix of the 
trend disturbances, ri and (t in (1.2), was given by Harvey 
(1989, p. 312). In the case of the trigonometric formulation, 
the frequencies must be multiplied by 7, and if there is an 
intramonthly effect, it is necessary to take account of the 
fact that different months may have different numbers of 
days. There are occasions in which a figure is not recorded 
on the usual day of the week due to a holiday. In such cases 
it is straightforward to modify the state-space formulation 
to make allowance for the different time intervals involved. 
This generally involves multiplying disturbance variances 
(and frequencies, if relevant) by a factor of p/7, where p is 
the number of days since the last observation. 

Estimates of the various components in the model us- 
ing all the observations can be computed by smoothing. 
The algorithm devised by Koopman (1993) allows smooth- 
ing to be carried out with computational efficiency without 
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Figure 7. Smoothed Estimates of the Effect of Easter: Wednesday 
Before (solid line); Wednesday After (dashed line). 

excessive storage requirements; see Appendix B. Smooth- 
ing forms the basis for seasonal adjustment because all that 
needs to be done is to remove the periodic and moving- 
festival smoothed seasonal components. Note that the best 
estimate of the seasonal effect at the end of the series is 
given by filtering, so a seasonally adjusted figure can be 
provided as each new observation becomes available. This 
figure can subsequently be revised as further observations 
become available. 

5. U.K. MONEY SUPPLY 

To get some idea of the seasonal pattern in the MO series 
shown in Figure 1, it was subject to simple detrending using 
the Hodrick-Prescott filter. This filter can be obtained very 
easily as the smoother for a local linear-trend model-that 
is, (1.1) and (1.2) without the seasonal-in which 0r2 = 
and C /a, = .000625. A plot of the observations in each 
year shows clear and permanent changes in the seasonal 
pattern. This is particularly marked at Christmas. Figure 2, 
page 356, shows the pattern of detrended observations over 
the Christmas period when Christmas falls on a Friday and 
on a Saturday. At the beginning of the sample, the peak is 
about 5% above the trend, whereas at the end it is about 
10% . The same features appear when Christmas falls on 
other days of the week. 

The periodic component was modeled using a time- 
varying spline. A good deal of experimentation was car- 
ried out in positioning the knots and dummy variables. To 
capture the peaks at times such as Christmas, a relatively 
large number of knots are needed in a short period. At 
other times, the seasonal pattern changes quite slowly and 
only a few knots are needed. Similar considerations ap- 
plied in modeling the intradaily electricity demand of Har- 
vey and Koopman (1993). Here the situation is more com- 
plicated because the interaction between the positioning of 
the dummy variables needed to capture the moving festivals 
and the knots used to pick up the rest of the seasonal pat- 
tern. The final specification had 19 knots and was decided 
by factors such as the "t ratios" of the knot coordinates 
and dummies, diagnostics and residual plots, goodness-of- 
fit statistics, and forecasting performance. Increasing the 

oD 

on 

Table 3. Diagnostics: Residual Autocorrelations 

Model rl r2 r3 r52 r53 

Constant periodic variance .06 .08 -.13 .31 .01 
Doubled at Christmas .23 -.16 -.02 .09 -.02 

number of knots gives a better fit and reduces the residual 
serial correlation at lags 1 and 2 and at the annual lag of 52 
(and 53). The less smooth the pattern is and the more knots 
are included, however, the less easy it is to distinguish the 
periodic pattern from the moving-festival pattern. 

All moving public holidays fall on Mondays, except for 
Good Friday, and the moving-festival dummy variables 
were specified as follows: 

1. Easter-the two weeks before and the week after 
2. May Day-the week before and the week after (from 

1978) 
3. Spring Bank Holiday-two weeks before and the 

week after 
4. August Bank Holiday-two weeks before and the 

week after 

No restrictions were put on these holiday effects, al- 
though this is easily done. For example, the same state 
variable could be used for the Spring and August Bank 
Holidays. Thus, there are 11 stochastic dummy variables in 
the state vector. An additional dummy was included in June 
1977 to allow for the special holiday for the Queen's Silver 
Jubilee. 

No evidence was found for a significant intramonthly ef- 
fect. A smooth trend-that is, aO2 set to 0-was preferred 
because it was not much affected by the seasonal pattern. 

The residuals exhibit considerable variability around 
Christmas. Because of the importance of Christmas and the 
speed with which the pattern can change, we found that 
a better model could be obtained by increasing the vari- 
ance of the disturbances driving the movements in the knots 
around Christmas; see (2.8). When we doubled the variance 
of the Christmas knots, we found that the residuals close to 
Christmas were much more akin to residuals in other parts 
of the year. Furthermore, the unstandardized prediction er- 
rors were also smaller around Christmas; see Figure 3, page 
357. (It could be argued that one of the reasons the Christ- 
mas effect changes so rapidly is because it is different for 
Christmas falling on different days of the week. We were 
unable to capture such an effect by additional dummies; in- 
deed, given that each day occurs only three or four times in 
our sample, this may be impossible to do. An examination 
of Fig. 2 and the plots for other days, however, indicates 
that the evolution over time far outweighs any possible day- 
of-the-week effect.) 

Table 4. Diagnostics: Box-Ljung Statistics 

Model Q(6) Q(26) Q(53) Q(125) 

Constant periodic variance 16.78 40.88 130.8 271.0 
Doubled at Christmas 27.29 55.40 111.2 231.4 

NOTE: Q(P) is based on first P residual autocorrelations. 
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Table 5. Diagnostics: Normality Test Statistics 

Bowman- 
Model Skewness Kurtosis Shenton 

Constant periodic variance 10.82 93.11 103.9 
Doubled at Christmas 1.00 7.94 9.94 

Table 1, page 357, shows the estimated hyperparameters 
for the specification with and without the doubling of the 
periodic variance at Christmas. The q's denote hyperparam- 
eters relative to the variance of the irregular. Because of the 
sharp change in the trend in the late 1970s, it turned out 
to be more satisfactory to drop the first 400 observations 
in estimating the hyperparameters. They were retained for 
all other purposes, however. For the reasons given in the 
previous paragraph and confirmed in the following discus- 
sion, the doubled variance model is our preferred specifica- 
tion. Table 2, page 358, shows the estimates of the state for 
this model at the end of the sample, together with their t 
ratios-that is, the estimates divided by the corresponding 
root mean squared errors. In assessing the relative impor- 
tance of the various estimates from their t ratios, it must be 
remembered that they are liable to change over time. Thus, 
although some knots are not significant at the end of the 
sample, they may have been in the past. 

Figure 4, page 359, graphs the smoothed trend. Its rela- 
tively slow changes seem to be quite suitable for this series. 
Figure 5, page 360, shows the smoothed pattern of the pe- 
riodic component over the last four years, and Figure 6, 
page 361, shows the moving-festival component. Note that 
there are very few knots in periods when there are public 
holidays-for example, in April and May. Small changes 
in both periodic and moving-festival patterns are apparent 
even over a short period of time. Figure 7 illustrates the 
much more dramatic changes that can take place over a 
longer period. It shows the evolution of the dummies in 
the weeks before and after Easter over the full sample. As 
with the Christmas effect, there is a doubling effect, with 
a movement from around 1.5% of the underlying level to 
over 3%. 

The equation standard error, s, which is the square root 
of the one-step-ahead prediction-error variance, is normally 
used as a measure of goodness of fit, but here there is 
a problem because the nature of the model means that it 
changes over time and never goes to a steady state. A rough 
idea of the size of s can be gauged from Figure 3. 

Residual serial correlation can be assessed by the autocor- 
relations at lag 7, denoted r(7), and the Box-Ljung statis- 
tics, Q(P), based on the first P autocorrelation. Tables 3 
and 4 report these statistics for the last five years. It seems 
to be diftficult to eliminate serial correlation completely un- 
less many knots are used, and our preference is to keep the 
number of knots reasonably small. The model with constant 
periodic variance shows quite strong serial correlation at lag 
52, and the plot of the residual correlogram in Figure 8(a) 
confirms the impression of some residual seasonal effects. 
Figure 8(b) indicates that this feature is eliminated in the 
model with the periodic variance doubled around Christ- 

mas. There is now more serial correlation, however, at lags 
1 and 2. If this were felt to be of any practical importance, 
it could be removed by letting the disturbance follow a low- 
order autoregressive moving average process. 

Table 5 reports the skewness and kurtosis moment test 
statistics and the Bowman-Shenton normality test statistic. 
When the model is correctly specified with Gaussian distur- 
bances, the skewness and kurtosis statistics are asymptoti- 
cally distributed as chi squares with 1 df, whereas Bowman- 
Shenton has a chi-squared distribution with 2 df; see Har- 
vey (1989, chap. 5). The extremely high kurtosis is due to 
the Christmas effect, but it is reduced to a reasonable level 
when the periodic variance is doubled around Christmas. 

The fact that the model is successful comes out in the 
predictions over the last few years. Figure 9 shows the one- 
step-ahead predictions obtained by filtering. This effectively 
gives the same information as the prediction-error plot in 
Figure 3, but it brings home more clearly how accurate the 
predictions are, being less than .5% of the level most of 
the time. Even more impressive is Figure 10, which shows 
the multistep predictions made from September 9, 1992. 
Overall the model is successful in providing a relatively 
parsimonious representation of the data. 
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6. CONCLUSIONS 

This article has set out a method of building a time se- 
ries model for weekly observations. The key feature of the 
model is the setting up of the seasonal component in terms 
of a periodic component and a movable dummy compo- 
nent. The former is parsimoniously modeled with aperiodic 
spline, though a trigonometric formulation could also be 
adopted and might be preferable in different circumstances. 
In our application the moving-festival component was pri- 
marily needed to deal with observations about Easter. Note, 
however, that, in countries where carnival is celebrated, the 
position of Easter may have important effects in February 

or early March. In other countries, other moving festivals, 
such as Chinese New Year, may be more relevant. 

The structural time series approach has the advantage 
that once a regression formulation has been found it can 
be extended to allow the effects to evolve over time. In 
other words, a deterministic component can be generalized 
so that it becomes stochastic. Furthermore, it is possible 
to build in constraints that ensure that the forecasts of the 
seasonal component sum to 0 over a year, thereby ensur- 
ing that there is no confounding of trend and seasonal ef- 
fects. Once such a model has been formulated, statistical 
handling via the state-space form is relatively straightfor- 
ward. When the parameters have been estimated, seasonal 
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Figure 10. Multistep Predictions From September 9, 1992. 
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adjustment can be carried out by subtracting the smoothed 
periodic and moving-festival components. This seasonally 
adjusted series can be continuously updated as new obser- 
vations arrive. 

The preceding approach is fairly general and should be 
applicable, with minor modifications, to other weekly series 
and indeed to other types of series in which data arrive at 
regular or irregular intervals throughout the year. 
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APPENDIX A: PERIODIC CUBIC SPLINES 

This appendix presents the derivation of a cubic spline 
function g(x) that approximates an unknown function 
f(x). Periodic cubic splines are subjected to special end- 
conditions. The cubic spline is defined as a set of polyno- 
mial functions differentiable up to order 3 with the first two 
derivatives continuous. The set of coordinates (4x, y ), with 
i = 0, 1,..., k, will be referred to as the set of knot points 
associated with the mesh (x0, ... , k). In this appendix, the 
knot coordinates are treated as fixed and known. Section 
2.2 describes how the yk 's are estimated when they are al- 
lowed to change over time. It will be shown that the cubic 
spline function is derived as a set of linear equations; see 
also Poirier (1976). 

Let us assume that the mesh is in ascending order, 

Xto < x <-... < x . (A.1) 

Let h, = x3 -xj_,j 
= 1,...,k, and let dj(x) and dj(x) 

denote the first and second derivatives, respectively, of the 
spline function g(x) calculated in the interval [x•_, xt]. The 
cubic spline function is a mixture of polynomials of order 
3, so its second derivative within [x_-, x] will be linear; 
that is, 

t t- x x - 

h= aj_l + h• a, j = 1,..., k. 

(A.2) 

The scalar aj is the second derivative of the spline func- 
tion at the knot point x; that is, aj = d2(x ). Starting from 
(A.2), the cubic spline and the periodic spline are easily 
derived by the following steps: 

1. Expressions for the first derivative function and the 
cubic spline function g(x) are obtained via standard rules 
of integration. The spline function is forced to cross the 
knots; that is, g(x) = y and g(x>_l) = yj_. This leads 

to 

[(x4 x) )2 - hj] - -X 
(x)=(- 6h aj-1 + Yj- 3 6hj hj 

t [(xt 2j 2 -] X-L +(x - x _1 -1) a- + 3 -1 
6hj hj 

(A.3) 

and 

dj(x) = 1 
(x-j 

x)2 
aj-1 2 h. 6 

1x _- 
t 2 hj + 

1 
1( 

6 aj (A.4) 
2 hj 6 

with x_1 < x < x,j = 1, 2, .. ., k. 
2. The spline function (A.3) can be expressed in vector 

notation via 

gj(x) = r yt + s a, (A.5) 

where a= (ao,..., ak)',yt (y ... ,yt t)', and the vectors 

rj and sj are equal to 0 except for their jth and (j + 1)th 
elements, which correspond to the appropriate weights 
of (A.3). 

3. The continuity restriction also applies to the first 
derivative (A.4), dc (xr) = dj+1(x ). After some minor ma- 
nipulations, we obtain a set of k - 1 linear restrictions 

hj hj3l 
h+ aj_1 + 2aj + 

h 
aj1 a 

hj + hj+l hj + hj+l 

%6yj1 6y 6Y6, 

hj(h3 + h+1) hjhj+l hj+l(hj + h+1)' 

j=1,2,...,k-1. (A.6) 

4. A system of k-1 linear equations with k+1 unknowns 
aj cannot be solved unless two linear restrictions are added. 
Poirier (1976) suggested setting ao = ak = O, which he 
defined as a natural condition for a spline. With these two 
additional constraints the system of equations (A.6) can be 
represented in matrix notation as 

Pa = Qyt, (A.7) 

where 
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2 0 0 .. 0 0 
h 2 h2 ... 0 0 

hi+h2 hl+h2 

o 2 "'" 0 0 
0 h2+h3 

0 0 h3 ... 0 0 
h3+h4 

0 0 0 0 0(A.8) 

0 0 0 "'" 2 hk 
hk-l +hk 

0 0 0 ... 0 2 

and 

0 0 0 . 0 0 
6 6 6 0 0 

hi(hi+h2) hih2 h2(hl+h2 ) 

0 
6 6 

0 0 S h2(h2+h3) h2h3 0 0 
0 0 h3 (h3+h4) 0 0 

Q = 0 0 0o o. 0 0 (A.9) 

0 0 0 6 6 
hk-lhk hk(hk-1+hk) 

0 0 0 .. 0 0 

5. The matrices P and Q have dimension (k + 1) x 
(k + 1). Note that the first and the last rows of P and Q 
represent the natural constraints a0o = ak = 0. The solution 
for a is 

a = P-1Qyt (A.10) 

so that (A.5) becomes 

gj(x) = w yt, (A.11) 

with 

w/ = r/ + sP 1Q. (A.12) 

This shows that, given a set of k knots with a particular 
vector yt, the natural spline g(x) can be calculated for any 
t < x < xtk. Note that if x equals xl , O i j ? k, vector 

wj is 0 except for its jth element, which equals unity and 
hence g(xj) = ty. 

6. The cubic spline becomes periodic when the first and 
the last knots are restricted to be the same. The continuity 
is enforced by letting the corresponding first and second 
derivatives to be the same as well; that is, 

t = ytk, di(xo) = dk (Xtk), d 2xto) = d2(Xtk). (A.13) YO k I k 
i~ 

1 0t k k~l 

The second restriction of (A.13) implies 

hk hi - k-1 + 2ak + al hi + hk hi + hk 

6ytk_- 6ytk 6yt 
k-k1 k_+ 1 

(A. 14) 
hk(hl + hk) hlhk hl(hl + hk)' (A.14) 

which can be added to the set of linear restrictions (A.6). 
The last restriction of (A.13) sets ao = ak. Therefore, the 
natural constraints are no longer required because we now 
have a system of k linear restrictions and k unknowns. The 
(k x k) matrices PP and Q, for a periodic spline become 

2 s-- 0 ... 0 h hl+h2 hl+h2 

h2 2 h ... 0 0 
h2+h3 h2+h3 

0 h-- 2 " " 0 0 
h3+h4 

o o h4 ... 0 0 

P0 0 0 ? 2?h 0 0 hk-l+hk 
hi 0 0 .. h 2 

hl+hk hi+hk 

(A.15) 

and 
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6 6 o0 .. 0 6 
hh22 h2(h +hT) hi(h,+h2) 
6 6 6 ... 0 0 

h2(h2+h3 ) h2h3 h3(h2+h3 ) 

0 6 6 0 0 h3(h3+h4) h3h4 
S0 h4 (h4+h 0 

0(A.16) 0 0 0 .. 0 0 

0 0 0 6 6 
hk-lhk hk(hk-l+hk) 

6 o0 0 6 6 
hl(hl+hk) hk(hl +hk) hi hk 

Furthermore, the (k x 1) vectors a, y, rj, and sj,j = 

1, ..., k, are adjusted appropriately, also with respect to the 
first restriction of (A.13). 

In the main body of the article vector w. is defined in 
(2.5) as 

k 
w*= wj, (A.17) 

j=1 

where wj, j= 1,..., k, must be computed even if the eval- 
uation of the spline at position j is not required. Therefore, 
when k is large, the calculation of w, may become a com- 
putational burden. An alternative expression for w, is 

w = + s,P1Qp, (A.18) 

where r, = =1 rj and s = j=1 sj can be analytically 
derived as 

t t t t-L t t t - X 
(2 0 k 

k.2 
1 

X 
0 k k-1XX) 

r,2 '-- . 2 ' 2 

(A.19) 

and 
t t h3 - h3 t - t -3 h3 

17 2 
0 

2 1 
k k 

-2 
hk hk-1- 

24 '" 24 

h(1 - h) + hk(1- h) A.20) 
24 

APPENDIX B: STATE-SPACE METHODS AND 
SEASONAL ADJUSTMENT 

The full model (4.1) can be put in state-space form; that 
is, 

Yt = Ztat + Gtut, ut ' NID(O, I), 

at+l = Ttat + Htut, t = 1,..., T, (B.1) 

where Zt is given in (4.2) and the matrices Tt, Gt, and Ht 
are constructed straightforwardly. Note that the matrices Gt 
and Tt are time-invariant, but matrix Ht is time-varying 

because the variances of the periodic effect are forced to 
increase around the Christmas period. The disturbance vec- 
tor ut is the stack of all disturbances associated with the 
unobserved components of the model including the irreg- 
ular et. The initial state a1 is treated as a random vector 
generated from a diffuse distribution. 

The Kalman filter, or its more stable counterpart the 
"square root" Kalman filter, is used for the evaluation of the 
likelihood and for the calculation of one-step-ahead predic- 
tion errors. The Kalman filter is given by 

vt = yt - Ztatit-1, 

ft = ZtPtlt-lZ't + GtG t 

Kt = TtPtlt_lZtft-1, 

at+11t = Ttatit-1 + Ktvt, 

Pt+l1t = TtPtt-T 
r - ftKtK i + HtH'L (B.2) 

with the initializations allo = 0 and P110 = ,Ii, where 

n is a suitably chosen large number. The vector atlt-1 is 
the one-step-ahead prediction of the state at with its mean 
squared error matrix Ptlt-1. The one-step-ahead prediction 
error and its variance are given by vt and ft, respectively. 
The vector Kt is referred to as the Kalman gain. Usually, 
the Kalman filter is computationally not very demanding 
but Model (4.1) requires a large state vector that leads to a 
computational effort with respect to Ptlt-1. Of course, the 
computations take longer as the number of observations in- 
creases. 

A state smoothing algorithm is designed to compute 
full-sample estimates of the state vector. The estimated 
trend and periodic components can be extracted from the 
smoothed state vector, and they can be graphically repro- 
duced as part of a validation procedure of the estimated 
model. Seasonal adjustment procedures remove seasonal 
and periodic variation from the observed series and, there- 
fore, in the context of state-space models, they require a 

Table B1. Computational Performance of Smoothing 

Algorithm Multiplications Storage Seconds 

De Jong (1989) 1,024 594 14.7 
Koopman (1993) 62 34 1.8 
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state smoother. Smoothing algorithms are computationally 
expensive, especially when the state vector is large, and they 
require much storage space because a selection of Kalman 
filter quantities needs to be stored for t = 1,... , T. 

We consider two different state smoothers, proposed by 
De Jong (1989) and Koopman (1993). Table B.1 reports the 
number of multiplications for each time index t, the num- 
ber of values to be stored for each time index t, and to- 
tal computer time required for smoothing a series of 1,500 
observations on a Pentium processor with clock speed 90 
MHz. The model considered is (4.1) with 20 knots for 
the periodic spline and 10 stochastic dummy variables for 
the moving-festival effects. The results show dramatically 
that the smoothing algorithm of Koopman (1993) outper- 
forms the algorithm of De Jong (1989) with respect to all 
indicators. Koopman's algorithm does not give the mean 
squared errors of the smoothed estimators of the state 
vector, but for many applications this is not necessary. 
Koopman's smoothing algorithm is a two-step approach. 
First, a backward disturbance smoother is applied; that is, 
et = vt/ft - K rt, rt-1 = Z'et + T rt, t = T, ..., 1, with 
initialization rT = 0. The Kalman filter only needs to 
store the scalar vt/ft and the vector Kt, t = 1,... ,T. 
The storage space can be overwritten to store the vector 
nt = HtHIrt. Second, the forward recursion at+llT 

= 

TtatT+nt, t = 1, ... , T-1, must be used with initialization 
a IT = all0 + Pll0ro. The storage space can be overwritten 
by the smoothed state vector 

atlT. 

[Received May 1995. Revised March 1996.] 
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