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Summary. The forward search provides a powerful and computationally simple
approach for the robust analysis of multivariate data. In this paper we suggest a
new forward search algorithm for clustering multivariate categorical observations.
Classification based on categorical information poses a number of challenging issues
that are addressed by our algorithm. These include selection of the number of groups,
identification of outliers and stability of the suggested solution. The performance of
the algorithm is shown with both simulated and real examples.
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1 Introduction

Clustering objects on the basis of information provided by categorical variables
is an important goal in almost all application fields. For instance, in marketing
research consumers typically need to be classified according to several categor-
ical attributes describing their purchasing behaviour. This mass of categorical
information is essential for uncovering market segments, that can help both
to understand the differential consumption patterns across segments and to
address them through specific advertising programmes. The evaluation of ser-
vice quality data is another emerging application field, where it is important
to have fast and reliable clustering algorithms suited to categorical variables.
An example from this field will be seen in §4, where Italian municipalities are
classified according to their degree of activity in e-government.

In spite of its practical relevance, clustering of discrete multivariate ob-
servations has received relatively little attention. A commonly used approach
is to compute suitable measures of pairwise dissimilarity, such as the simple
matching coefficient (e.g. [G99], §2.2), and then to use these measures as in-
put for hierarchical clustering algorithms. Hierarchical agglomeration plays an
important role also in the clustering algorithm of [FM04], which can be used
with categorical information. The main problem with hierarchical algorithms
is that they rapidly become computationally unacceptable and provide results
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that are difficult to represent as the number of objects grows. The k -modes
algorithm of [H98] and [CGC01] is a notable exception which tries to combine
the efficiency of the standard k -means paradigm with the need to take categor-
ical information into account. This is accomplished by running a k -means type
algorithm with simple matching dissimilarities instead of Euclidean distances
and cluster modes instead of means. However, as with k -means, the results
from k -modes can be very sensitive to the choice of the starting solution and
even to the order of the observations in the data set. An additional shortcom-
ing is that cluster modes may not be uniquely defined at some steps of the
iterative procedure, thus leading to indeterminacy in the clustering solution.

In this paper we take a different view and address the issue of clustering
data sets with categorical information through the robust forward search ap-
proach. The forward search is a powerful general method for detecting uniden-
tified subsets and multiple masked outliers and for determining their effect on
models fitted to the data. The search for multivariate data, including clus-
ter analysis with quantitative variables, is given book length treatment by
Atkinson, Riani and Cerioli [ARC04]. It is our purpose to extend their robust
clustering technique to cope with non-numeric attributes. This poses a num-
ber of novel problems, such as providing a suitable definition for the “centre”
of a population along the search and for the “distance” of an individual from
that centre. The suggested method is described in §2. It is computationally
affordable and provides an assessment of the impact of each observation on
the fitted clustering solution. It also helps to shed light on the actual num-
ber of clusters in the data, a critical issue with most, if not all, partitioning
techniques. The performance of our technique is evaluated in §3 with several
simulated datasets under known clustering conditions, including contamina-
tion by a small group of outliers. A real dataset is then analysed in §4.

2 Cluster detection through diagnostic monitoring

2.1 Distance from a discrete multivariate population

Let S = {u1, u2, . . . , un} be a set of n units for which we observe v nominal cat-
egorical variables X1, X2, . . . , Xv. Unit ui is represented as [xi1, xi2, . . . , xiv]′,
where xij ∈ C(j) is the observed class of variable Xj in unit ui, and C(j) is the
set of possible classes for Xj . The number of such classes is cj . For each vari-
able the elements of C(j) are unordered. We compute the dissimilarity between
ui and ul through the simple matching coefficient

d(ui, ul) =
v∑

j=1

I(xij 
= xlj), i, l = 1, . . . , n, (1)

where I(·) is the indicator function.
An alternative representation of simple matching is obtained through

dummy coding of the categorical variablesX1, X2, . . . , Xv. Let X
(1)
j , . . . , X

(cj)
j
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be dummy variables giving the observed class for Xj , i.e. x
(c)
ij = 1 if xij = c

and x
(c)
ij = 0 otherwise. The dissimilarity between ui and ul is measured as

d(ui, ul) =
v∑

j=1

∑
c∈C(j)

(x
(c)
ij − x(c)

lj )2, i, l = 1, . . . , n. (2)

It is easy to see that (1) and (2) are equivalent, since they provide the same
ordering of the dissimilarities among pairs of units. However, definition (2) has
the advantage of being easily generalized to encompass differential weighting
of the categories of each variable. The weighted measure is

d(ui, ul) =
v∑

j=1

∑
c∈C(j)

w
(c)
j (x

(c)
ij − x(c)

lj )2, i, l = 1, . . . , n, (3)

where w
(c)
j ≥ 0 is the weight given to category c of variable Xj in the classifi-

cation process. Popular choices for w
(c)
j include equal weighting, i.e. w

(c)
j = 1

for all c ∈ C(j) and j = 1, . . . , v, so that (3) reduces to (2), and

w
(c)
j = {π̂(c)

j (1− π̂(c)
j )}−1, 0 < π̂

(c)
j < 1, (4)

where π̂
(c)
j =

∑n
i=1 x

(c)
ij /n is the proportion of units in S for which Xj = c.

Equation (4) gives the inverse of the variance of X
(c)
j in S, a scaling measure

adopted for clustering purposes in [FM04] among others. Definition (3) can
be further generalized to obtain a Mahalanobis-type simple matching dissim-
ilarity measure, but this extension is not considered here.

The next step is to define a measure of closeness between a unit and a

population. Recalling the definition of x
(c)
ij , unit ui can be represented through

xi = [x
(1)
i1 , . . . , x

(c1)
i1 , . . . , x

(1)
iv , . . . , x

(cv)
iv ]′, a vector of dimension C =

∑v
j=1 cj .

We suppose that xi is a random observation from a population with class

probabilities π = [π
(1)
1 , . . . , π

(c1)
1 , . . . , π

(1)
v , . . . , π

(cv)
v ]′, so that E(x

(c)
ij ) = π

(c)
j ,

for j = 1, . . . , v and c ∈ C(j). Following (3), we compute the dissimilarity
between ui and the mean vector π, or, when π is unknown, its sample estimate

π̂ = [π̂
(1)
1 , . . . , π̂

(c1)
1 , . . . , π̂

(1)
v , . . . , π̂

(cv)
v ]′, as

di = d(ui, π̂) =

v∑
j=1

∑
c∈C(j)

w
(c)
j (x

(c)
ij − π̂(c)

j )2.

2.2 The forward search and the identification of clusters

The basic idea of the forward search is to start from a small, robustly chosen,
subset of the data and to fit subsets of increasing size, in such a way that
outliers and subsets of data not following the general structure are clearly
revealed by diagnostic monitoring. With multiple groups, searches from more
than one starting point are often needed to reveal the clustering structure.
For continuous populations, [ARC06] demonstrate the usefulness of starting
the search from randomly selected subsets that avoid any preliminary data
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analysis. Here we provide evidence for multiple random starts from subsets of
discrete multivariate observations.

In the forward search for clustering categorical data the mean estimate π̂
is repeatedly computed on a subset of m observations, S(m) say, yielding the

C-dimensional vector π̂(m) = [π̂
(c)
j (m)]′, for j = 1, . . . , v and c ∈ C(j). From

this subset we obtain n dissimilarities

di(m) = d(ui, π̂(m)) =

v∑
j=1

∑
c∈C(j)

w
(c)
j (x

(c)
ij − π̂(c)

j (m))2 i = 1, . . . , n. (5)

We start with a randomly selected subset of m0 observations which grows
in size during the search. When subset S(m) is used in fitting, we order the
dissimilarities (5) and take the units corresponding to the m + 1 smallest as
the new subset S(m+1). To detect potential clusters, we look at forward plots
of quantities derived from the dissimilarities (5). One of the most useful plots
is that of the minimum dissimilarity amongst units not in the subset

dmin(m) = min di(m) i /∈ S(m). (6)

Apart from some initial noise, the searches started in subsets of units with
similar features will lead to the same forward plot of dmin(m). We look at
bunches of similar trajectories to identify the number of clusters and how
they originate. Furthermore, at the step where all the units of a homogeneous
group have been included in S(m), the dissimilarity (6) will be large compared
to the maximum dissimilarity within S(m). We look at peaks in the forward
plots of dmin(m) for precisely identifying such clusters. Cluster membership is
obtained by looking at the units in the subsets just before the peaks.

Other valuable tools for detecting important cluster features include the
forward plot of individual dissimilarities di(m), i = 1, . . . , n, the entry plot
showing the composition of S(m) at each step of the search, and the forward

plot of sample proportions π̂
(c)
j (m), j = 1, . . . , v. The last plot can also be a

useful aid to the interpretation of clusters along the search.

2.3 Outlier detection

The definition of an outlier as an extreme observation is not suitable for cat-
egorical data, since each Xj can take at most cj distinct labels for which no
ordering is available. More generally, we define an outlier as an observation
not following the general structure of the data. In the present context, where
detection of several groups is of concern, an outlier is then a unit not falling
in any of the main groups forming the “clean” part of the data. This broader
definition encompasses both “isolated” outliers, i.e. units which are far from
all major groups, and “intermediate” outliers, i.e. units which fall within the
boundaries of two clusters. Both types of outlier can have strong effects on the
results of standard methods for cluster analysis. The identification of inter-
mediate outliers is of particular concern because the absence of sharp cluster
boundaries is a common occurrence in applications of clustering methods.
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These units might also be difficult to detect using multivariate techniques
with a high breakdown point, as is shown in [ARC04] in the case of bivariate
continuous populations. Alternative clustering methods that try to reduce the
effect of outliers are described by [CAGM97], [FR02] and [H03], but most of
them are not easily extended to deal with nominal categorical variables.

2.4 Computational issues

The algorithm suggested in this paper shares the main properties of the for-
ward search approach described in [ARC04], including computational sim-
plicity and effectiveness of its graphical displays. It can be implemented by
suitable modification of the software Rfwdmv, an R package specifically de-
vised to perform the forward search for the analysis of continuous multivari-
ate observations. The Rfwdmv package is available from CRAN, or can be
downloaded from the web site http://www.riani.it/arc/software.html.
It includes many functions and utilities for cluster analysis, such as the pos-
sibility of highlighting or removing, by a simple click, a set of trajectories in
the forward plot of Mahalanobis distances. See [CK06] for further details.

3 Performance of the method

We evaluate the performance of our forward clustering technique through
its ability to recover known clusters. For this purpose, we simulate several
datasets under different scenarios and apply the algorithm proposed in §2 to
each of them. The main findings are reported in §3.

3.1 Design of the simulation study

The setting of this study broadly mimics the structure of the application of
§4. In each simulated dataset there are 240 “uncontaminated” units and 30
independent categorical variables. The datasets differ with respect to:

• the number of groups k (either k = 3 or k = 6);
• the number of classes cj for each variable (either cj = 2 or cj = 4, j =

1, . . . , v);

• the amount of noise in the simulation of x
(c)
ij (either moderate, i.e.

Pr(x
(c)
ij 
= π(c)

j ) = 0.10, or high, i.e. Pr(x
(c)
ij 
= π(c)

j ) = 0.20);
• the amount of contamination (either no contamination or contamination

by a cluster of 4 intermediate outliers and 1 isolated outlier).

Group sizes are taken to be n1 = 100, n2 = 80 and n3 = 60 if k = 3, and
n1 = n2 = 50, n3 = n4 = 40 and n5 = n6 = 30 if k = 6. Each group is defined
through a set of v/k variables, for which there is a class c such that

π
(c)
j & π(c′)

j c′ 
= c ∈ C(j). (7)
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Intermediate outliers lying between different groups are obtained by letting
condition (7) hold for some variables in each group. For the isolated outlier,
(7) holds for every j. In each dataset we start the forward search with the
smallest possible subset size m0 = 2 to enhance the possibility of detecting
small clusters, although this may slightly increase noise in the initial steps of
the algorithm.

3.2 Simulation results

We only describe the results for binary variables and the equal weight dissim-
ilarity (2). Those for polytomous attributes are similar and are not detailed
here. The simulated datasets analyzed in this paper are available at the web
site http://www.riani.it/c06.

We start by considering the dataset with three clusters, moderate noise,
four intermediate and one isolated outlier. The left-hand panel of Figure 1
contains the results of 500 forward searches from randomly selected starting
subsets of size m0 = 2. For each search we have plotted the dissimilarity
dmin(m), defined in (6). The underlying three-group structure dominates the
plot. The most striking feature is that, as early as m = 20, the searches follow
only three different trajectories, regardless of starting point. These trajectories
then merge towards the end of the algorithm, as units from different clusters
enter into S(m). The effect of contamination is visible both at the end, when
the remote isolated outlier is included in S(m), and at the very beginning of
the plot, where random inclusion of outliers in the starting subset and their
immediate removal by the search lead to an early peak in dmin(m). The peak
at m = 60 is for searches containing units from the smaller group. At these
values of m the observations from the other groups are all remote and have
large dissimilarities from S(m). The peaks just after m = 80 and m = 100
are for searches starting in the other two clusters. They are slightly delayed
because the intermediate outliers lie on the border of these groups.

The plot shows the clear information that can be obtained by looking at
the data from more than one viewpoint. It also shows how quickly the search
settles down; because of the way in which units are included and excluded from
the subset, the searches rapidly tend to produce subsets located in one specific
cluster. The structure emerging from one of the possible viewpoints is depicted
in the right-hand panel, the forward plot of individual dissimilarity measures
di(m) for searches starting in the largest cluster. The effect of adding units
from a different group to a homogeneous subset is evident just after m = 100.
The isolated outlier and the borderline units are clearly revealed (black solid
lines), due to the peculiar shape of their trajectories.

A dissection of the units into three separate clusters can be obtained by
looking at the composition of S(m) just before the peaks in the forward plots
of dmin(m). The resulting classification allocates 234 observations to their
correct cluster, reveals the unique features of the isolated outlier and identifies
10 “borderline” units which could be equally assigned to different groups.
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Fig. 1. Simulated categorical data with cj = 2, three clusters, moderate noise, four
intermediate and one isolated outlier. Left-hand panel: forward plots of dmin(m)
for 500 searches with random starting points. Right-hand panel: forward plot of
individual dissimilarities starting from the largest cluster; the trajectories of the five
outliers are shown in black.

Among these borderline units, we find the four intermediate outliers, three
of which can been seen to form a separate cluster in the right-hand panel of
Figure 1. This clustering solution is more satisfactory than the one given by
the S-Plus version of k-means (12 misclassified units) in the optimistic sit-
uation where the true data structure is known and we set k = 5. Another
disappointing feature of standard partitioning methods is that slightly dif-
ferent algorithmic options can lead to widely different results. For instance,
we found on these data that the clustering solution provided by the k-means
implementation of SPSS, with k = 5, was remarkably different from that of
S-Plus.

Both panels of Figure 1 can indeed be interpreted as revealing the clusters.
But we also need to demonstrate that we are not finding structure where none
exists. Figure 2 repeats Figure 1 for a sample from a homogeneous population
with no outliers and moderate noise. These plots show none of the clustering
structure that we have found in our previous example. The left-hand panel
however does show again how quickly the search settles down, regardless of
starting point.



514 Andrea Cerioli, Marco Riani, and Anthony C. Atkinson

Subset size m

D
is

si
m

ila
rit

ie
s

Fig. 2. Simulated categorical data from a homogeneous population with cj = 2,
moderate noise and no outliers. Left-hand panel: forward plots of dmin(m) for 500
searches with random starting points. Right-hand panel: forward plot of individual
dissimilarities from a generic search. No clustering structure emerges

The simulated dataset with 6 clusters, high noise and 5 outliers provides a
challenging task for classification methods. Given the unfavourable v/k ratio
and the large amount of random error, we can expect the clusters to overlap
considerably in the observed sample.

Both the k-means and the k-modes algorithms have a poor performance
in this example even if we know, from external information, that k = 8. The
left-hand panel of Figure 3 contains the forward plots of dmin(m) for 500
searches with random starting points. The right-hand panel is a zoom taken
for 40 ≤ m ≤ 80. The search settles down later than before, an evidence
of higher noise. Although the structure of the plot is less striking than in
Figure 1, there is still some definite evidence of clustering. The right-hand
panel shows that, from around m = 40, all the searches converge to six stable
trajectories.

We produce further forward plots to investigate the clustering structure
implied by the six distinct trajectories. For instance, Figure 4 gives the view-
point from one of these subsets. The trajectory shapes in the upper panel show
a bunch of units forming a fairly distinct cluster from the rest of the data. The
isolated outlier is also apparent at the top of the plot. The lower panel contains

another useful forward plot, that of sample proportions π̂
(1)
j (m). There is a

sudden change in the trajectories for variables X11 −X15 at around m = 40,
suggesting the existence of a cluster of that size defined by such variables.

The analysis can be repeated from different viewpoints, corresponding to
the other stable trajectories in Figure 3.
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Fig. 3. Simulated categorical data with cj = 2, six clusters, high noise, four inter-
mediate and one isolated outlier: a difficult example for cluster analysis. Left-hand
panel: forward plots of dmin(m) for 500 searches with random starting points. Right-
hand panel: a zoom taken for 40 ≤ m ≤ 80.

Again, looking at the data from different perspectives and inspecting the
composition of S(m) just before the major peaks in the forward plots of
dmin(m) lead in the end to the identification of the whole group structure.
Procedures similar to those described in [ARC04] and plots like those in Fig-
ure 4 could be used to confirm this structure and to explore borderline units.

4 E-government data

The data we analyze come from a questionnaire sent to all the municipalities
of Emilia-Romagna, a region of northern Italy, in October 2004. The ques-
tionnaire aim was to measure the implementation of e-government technolo-
gies in a wide range of activities, from labour organization to on-line services
for citizens. The data set consists of 229 municipalities, i.e. those filling out
the questionnaire and having an active web site. Almost all the information
was collected on a categorical scale. Here we focus on 34 binary indicators de-
scribing implementation of advanced e-government services in citizen-oriented
activities, such as availability of interactive on-line services and e-democracy
facilities. The number of implemented services ranges from 22 (in the case of
Bologna, the regional capital) to only 1. A more detailed description of the
data, together with further references and some preliminary analyses, can be
found in [CMMZ05].
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Fig. 4. Simulated categorical data as in Figure 3. Further forward plots starting
from one cluster. Upper panel: individual dissimilarities di(m); a cluster of units with

increasing trajectories is shown in black. Lower panel: sample proportions π̂
(1)
j (m)

(the first plot corresponds to variables X1–X8, the second plot to X9–X16, the third
plot to X17–X24 and the fourth plot to X25–X30).

The upper panel of Figure 5 shows the results of 1000 forward searches from
randomly selected starting subsets. Here we start with m0 = 5, the results
being similar but slightly less noisy than with m0 = 2. For each search we
provide the forward plot of dmin(m) for the equal weight dissimilarity measure
(2). From m around 40 all searches follow the same trajectory, regardless of
the starting point. The end of the search shows a few possible outliers, without
evidence of masking.
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Fig. 5. E-government data. Upper panel: forward plots of dmin(m) for 1000 searches
with random starting points. Lower panel: a zoom taken for m ≤ 40.

Bologna and Modena, the two most remote units, are those with the
highest number of e-government services. Other municipalities with good e-
government facilities enter towards the end of the search, but without evidence
of clustering. This means that these units are fairly well separated in the space
spanned by the 34 indicators, although they are far from the majority of the
municipalities of Emilia-Romagna.

The plot also leads to identification of a few clusters giving rise to the
peaks visible in some trajectories for m < 40. The peaks are perhaps best
seen in the lower panel of Figure 5. As they contain only few searches, we may
anticipate a structure with some small and not very well separated clusters.
For instance, consider the peak at m = 12. It comes from a set of 22 searches
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containing municipalities with a relatively large, but not extreme, number of e-
government services. The slow decay of the trajectory originating in this subset
confirms a smooth transition from the cluster to the bulk of the data. The
searches that do not give rise to such peaks either contain observations from
more than one group, or come from an unstructured population. Therefore,
they do not provide evidence of clustering.

For a better understanding of the cluster structure, further forward plots
could be displayed. As in § 3, we monitor how individual distances (5) and

proportions π̂
(1)
j (m) evolve for selected searches, such as those producing the

peak at m = 12. These pictures (not shown) reinforce the idea of a large
unstructured population to which most municipalities of Emilia-Romagna be-
long, of a few relatively small and not well separated clusters added to this
“noisy” background, and of some “outstanding” but isolated municipalities.
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