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a b s t r a c t

The Forward Search is a powerful general method for detecting anomalies in structured
data, whose diagnostic power has been shown in many statistical contexts. However, de-
spite the wealth of empirical evidence in favor of the method, only few theoretical proper-
ties have been established regarding the resulting estimators. We show that the Forward
Search estimators are strongly consistent at the multivariate normal model. We also ob-
tain their finite sample breakdown point. Our results put the Forward Search approach for
multivariate data on a solid statistical ground, which formally motivates its use in robust
applied statistics. Furthermore, they allow us to compare the Forward Search estimators
with other well known multivariate high-breakdown techniques.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Forward Search (FS) is a powerful general method for detecting anomalies in structured data [2,6]. The idea behind
the FS is simple and attractive. Given a sample of n observations and a generating model for them, the method starts from a
subset of cardinalitym∗

≪ n – often only few observations are required in practice, unless n is very large –which is robustly
chosen to contain observations coming from the postulatedmodel. This subset is used for fitting themodel and the residuals,
or other deviancemeasures, are computed. The subsequent fitting subset is then obtained by taking them∗

+h observations
with the smallest deviance measures. The algorithm iterates this fitting and updating scheme until all the observations are
used in the fitting subset, thus yielding the classical statistical summary of the data. In practice h must be a finite number,
possibly depending on n and on the postulated model. For instance, the typical choice with independent observations and
moderate sample sizes is h = 1,while higher values are suitablewith correlated data or very large samples. In the asymptotic
framework of this work we have that h → ∞ as n → ∞, but we still assume a finite number of steps in the FS.

A major advantage of the FS is that it provides clear evidence of the impact that each unit, or block of units, exerts on
the fitting process, with outliers and other peculiar observations entering in the last steps of the search. The presence of
observations deviating from the null model can be displayed through pictures that monitor relevant quantities along the
search, such as model residuals, distances, and their order statistics. For instance, if only m < n units actually belong to
the postulated population, we typically observe a peak in the monitoring plot of the minimum residual (distance) outside
the fitting subset, when this subset only contains the m ‘good’ observations and the first outlier is about to enter. A further
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bonus of the FS is that its main findings are usually insensitive to the specific choice of the initial subset, provided that it
is outlier free, and virtually identical results are obtained through different criteria [7]. Typical methods for initializing the
FS are Least Trimmed Squares in regression [21] and robust bivariate projections in multivariate analysis [36], but several
alternative choices are also feasible.

The diagnostic power of the FS has been shown inmany statistical contexts. For instance, in regression [3,4,8] the deletion
residuals computed at each step of the FS can be monitored along the search, together with some of their relevant order
statistics, for the detection of outliers and unsuspected structure in data, and so for building robustmodels. Such informative
pictures are often called forward plots, because they are drawn by collecting several pieces of information, each of which is
gathered from a different subset as the algorithmprogresses. The full power of the FS thus stems from the combination of the
different pieces, like in a ‘‘data movie’’ as opposed to a ‘‘data picture’’. Similar tools have also been developed for correlated
observations [13], like in the case of spatial autoregressive models and in the kriging model of geostatistics. The FS for
multivariate data replaces residualswithMahalanobis distances, but keeps the general diagnostic approach unchanged. This
leads to a (partial) ordering of multivariate data, and to robust and efficient diagnostic tools for the detection of multivariate
outliers [5,30,27,18].

However, despite thewealth of empirical and simulation evidence in favor of themethod, only few theoretical properties
are available for the resulting estimators. The key ingredient for deriving such properties is the distribution of the basic
quantities, i.e. residuals or distances, which are monitored along the search. These quantities are computed after a sequence
of data driven steps. Therefore, obtaining their distribution is far from trivial, even in an asymptotic framework. Some
approximate results that are useful in practice are available in the regression setting, based on the combination of the
distribution theory of order statistics for residuals and truncation arguments under the normal distribution. Similar results
are also available in themultivariate framework, withMahalanobis distances in place of model residuals, and provide sound
statistical thresholds for outlier nomination in finite samples, even of small and moderate sizes [30]. A detailed asymptotic
analysis for the FS estimators has been developed only recently in [23,24], but for the univariate regression context only.
Their study involves theory for a new class of weighted and marked empirical processes, quantile process theory, and a
fixed point argument to describe the iterative nature of the FS algorithm. The main analytic results are an asymptotic
representation of the FS residuals, scaled by the estimated variance, and convergence of the corresponding empirical process.

In this paperwe dealwith the estimators obtained through the single-populationmultivariate version of the FS, forwhich
no asymptotic result is available yet. We do agree that the ultimate goal should be to study the weak convergence of the
empirical process defined through the FS as the algorithm progresses, e.g. by extending the complex analytic machinery of
[24] to themultivariate case. However, this difficult task is outside the scope of this paper and is left for further research. Our
goal in the present work is slightly less ambitious. The multivariate FS estimators are usually assumed to be consistent and
robust, following intuition and empirical experience, but formal proofs of such properties are still lacking. Our purpose is to
fill the gap and to provide justification for such statements. Our asymptotic results thus put the FS approach for multivariate
data on a solid statistical ground, which formally motivates its use in robust applied statistics and provides justification for
its very good diagnostic properties. Furthermore, our proofs of consistency and robustness are important because they allow
us to compare the FS estimators (3) and (4) with other well knownmultivariate high-breakdown estimators, for which sim-
ilar properties have been established in the past. These include the Minimum Covariance Determinant and its reweighted
version [14,25,15,10,11], S-estimators [17,20,35], Projection estimators [28,37,34] and Trimmed Likelihood estimators [16].
Some preliminary comparisons are provided in the paper, while more extensive theoretical and empirical results will be
given elsewhere.

A problem related to the one that motivates our work was also considered by García-Escudero and Gordaliza [19],
who derived the asymptotic distribution of the so-called radius process. This process is defined by trimmed Mahalanobis
distances similar to (5) below, when the trimming level 1 − γ varies in (0, 1]. However, an important difference is that in
the radius process themultivariate estimators of location and scatter are computed only once and for all; then, they are kept
fixed when the trimming level changes. This makes the radius process a valuable tool for the purpose of multivariate outlier
detection, when sufficiently ‘‘good’’ robust parameter estimators already exist. On the other hand, the adaptive nature of the
FS implies that the fitting subset changes with trimming level. New location and scatter estimators are thus defined at each
step of the FS. These estimators, as well as the corresponding ellipsoids in themultivariate normalmodel, are dependent and
the degree of dependence is unknown. We conjecture that, even with this additional degree of dependence at subsequent
steps of the FS, the corresponding radius process is weakly convergent, but a formal proof of this statement is lacking.
Therefore, in this paper we limit ourselves to analyze the pointwise asymptotic properties of the FS estimators, when they
are computed for a finite sequence of steps. The strong consistency and asymptotic equicontinuity properties that we derive
are clearly positive results towards our conjecture, and point to weak convergence results similar to those obtained by
García-Escudero and Gordaliza [19]. A careful asymptotic analysis of the relationship between the radius process and the
empirical process defined through the FS requires techniques that go well beyond the scope of this paper. Nevertheless, we
note that our requirement of the existence of ‘‘good’’ robust parameter estimators is less stringent than in the radius process.
For the consistency results derived in this paper, it is sufficient to start the FS with consistent estimators (see Assumption 1
in Section 3), while García-Escudero and Gordaliza [19] assume convergence with a rate of n−1/2.

Our basic model for the data generating mechanism is the multivariate normal distribution

M0 : yi ∼ Nv(µ, Σ), i = 1, . . . , n, (1)
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where yi = (yi1, . . . , yiv)′ is a v-variate observation,µ ∈ Rv, Σ is a positive-definite v×v matrix of constants, and y1, . . . , yn
are independent. Let m be the sample size of the fitting subset in a generic intermediate step of the FS, with m∗ < m < n.
We do not consider the situations corresponding to classical statistical inference (m = n) and to the initial step (m = m∗).
Under model (1) asymptotic results for the case m = n are of course well known, while those for m = m∗ will depend on
the specific properties of the initialization method chosen by the user.

Let 0 < γ < 1 be such that

m = ⌊nγ ⌋, (2)

where ⌊·⌋ denotes the floor function. The estimators of the parameters µ and Σ in (1) at step γ of the FS, based on a sample
of size n, are defined as follows

µ̇γ ,n =

n
i=1

wi,γ ,n

Wγ ,n
yi, (3)

Σ̇γ ,n = cγ
n

i=1

wi,γ ,n

Wγ ,n
(yi − µ̇γ ,n)(yi − µ̇γ ,n)

′, (4)

where either wi,γ ,n = 0 or wi,γ ,n = 1,Wγ ,n =
n

i=1 wi,γ ,n, and cγ is a scaling factor ensuring consistency of Σ̇γ ,n at
the normal model (1). Both the binary weights wi,γ ,n, i = 1, . . . , n, and the consistency factor cγ will be specified in the
following sections. Based on estimates (3) and (4), individual deviations from the null model M0 are measured through the
generalized Mahalanobis squared distances

d2i,γ ,n = (yi − µ̇γ ,n)
′Σ̇−1

γ ,n(yi − µ̇γ ,n), i = 1, . . . , n. (5)

The goal of this paper is to show that the FS estimators (3) and (4) are strongly consistent when the multivariate normal
model (1) holds for all the data. For this purpose, we start from the ideal case where the parameters µ and Σ are known.
Then we consider the effect of parameter estimation. In our asymptotic scheme we takem, n → ∞ in such a way that

m
n

= γ + O

n−1 , 0 < γ < 1. (6)

Our results are thus equally valid both under (2), and under other practically sensible choices ofm, such asm = ⌊nγ ⌋+1 or
m = ⌊(n+ v + 1)γ ⌋. An important consequence of consistency is that the asymptotic distribution of the squared distances
(5) isχ2

v , like that of classicalMahalanobis distances. Furthermore, we show that the FS estimators, and thus also the squared
distances (5), possess high-breakdown properties under contamination.

The structure of the paper is as follows. In Section 2we obtain consistency of the FS estimators in the ideal situationwhere
the parameters are known. The case of unknown parameters is dealt with in Section 3. Robustness is shown in Section 4,
while the empirical performance of the FS estimators is investigated in Section 5. The paper ends with some concluding
remarks and discussion of open issues in Section 6.

2. Case 1: fixed step with known parameters

We start our asymptotic analysis of the FS estimators (3) and (4) in the ideal case where the multivariate normal model
M0 holds with known µ and Σ . In this case, given a sample y1, . . . , yn of size n, progression in the FS would simply require
to order the n squared (population) Mahalanobis distances

d2i,n = (yi − µ)′Σ−1(yi − µ), i = 1, . . . , n, (7)

which correspond to the deviancemeasures (5)when the population parameters are known. UnderM0 the squared distances
(7) are i.i.d. according to a χ2

v distribution for any sample size n.
In what follows, we denote by Fχ2

v
(x) the distribution function of a χ2

v random variable. When dealing with vectors and
matrices we assume convergence to be componentwise, which is equivalent to assuming convergence in the Euclidean
(matrix) norm ∥ · ∥.

Fix a step 0 < γ < 1. In the known parameter case the FS estimators at γ are given by expressions (3) and (4), with the
general weights wi,γ ,n taking the form

w̃i,γ ,n = I(d2i,n ≤ δ2
γ ,n) i = 1, . . . , n, (8)

where I(·) is the indicator function and δ2
γ ,n is the γ -th quantile among the n squared distances (7). Let d2(1),n, d

2
(2),n, . . . , d

2
(n),n

be the order statistics of these squared distances. Note that, under M0, d2(1),n < d2(2),n < · · · < d2(n),n with probability 1. We
thus take

δ2
γ ,n = d2(m),n, (9)
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wherem is defined in (2). The scaling factor in the scatter estimate is given by

cγ =
γ

Fχ2
v+2

(χ2
v,γ )

, (10)

where χ2
v,γ is the γ -th quantile of the χ2

v distribution:

χ2
v,γ = F−1

χ2
v
(γ ). (11)

Let µ̃γ ,n and Σ̃γ ,n be the FS estimators (3) and (4) when the weights are defined by (8). The purpose of this section is to
show that µ̃γ ,n and Σ̃γ ,n are strongly consistent estimators of µ and Σ , whenm, n → ∞ so that (6) holds. But, before then,
we study the ‘‘idealized’’ estimators whoseweights are based on the γ -th quantile of theχ2

v distribution, i.e. the distribution
of the squared distances (7) whenM0 holds. For themoment, we also use the known value ofµwhen estimating the scatter.
These ‘‘idealized’’ estimators are thus defined as

µ̃∗

γ ,n =

n
i=1

w̃∗

i,γ ,n

W̃ ∗
γ ,n

yi (12)

Σ̃∗

γ ,n = cγ
n

i=1

w̃∗

i,γ ,n

W̃ ∗
γ ,n

(yi − µ)(yi − µ)′, (13)

where

w̃∗

i,γ ,n = I(d2i,n ≤ χ2
v,γ ) (14)

and W̃ ∗
γ ,n =

n
i=1 w̃∗

i,γ ,n. In the ‘‘idealized’’ estimators µ̃∗
γ ,n and Σ̃∗

γ ,n, the sum W̃ ∗
γ ,n is a random variable, differently from

what happens for µ̃γ ,n and Σ̃γ ,n.
We start with a preliminary Lemma and then provide a consistency result for µ̃∗

γ ,n and Σ̃∗
γ ,n. Our asymptotic properties

are form, n → ∞ so that (6) holds.

Lemma 1. Under M0 with known µ and Σ ,

1
n

n
i=1

w̃∗

i,γ ,nyi
a.s.
−→ γµ

1
n

n
i=1

w̃∗

i,γ ,n(yi − µ)(yi − µ)′
a.s.
−→ γ c−1

γ Σ .

Proof. Under modelM0, the results on elliptical truncation [33,1,31] give

E(yi|w̃∗

i,γ ,n = 1) = µ Var(yi|w̃∗

i,γ ,n = 1) = c−1
γ Σ . (15)

It then follows from the binary nature of w̃∗

i,γ ,n that

E(w̃∗

i,γ ,nyi) = γ E(yi|w̃∗

i,γ ,n = 1) = γµ, (16)

and

E

w̃∗

i,γ ,n(yi − µ)(yi − µ)′


= γVar(yi|w̃∗

i,γ ,n = 1) = γ c−1
γ Σ . (17)

The random vectors w̃∗

i,γ ,nyi, i = 1, . . . , n, are i.i.d. and satisfy the Kolmogorov condition for the SLLN [32, p. 27]. In fact,

according to (17), the variance of w̃∗

i,γ ,nyij is finite for any i = 1, . . . , n, j = 1, . . . , v. Let C be such thatmaxj Var

w̃∗

i,γ ,nyij


≤

C < ∞. Then, we have

lim
n→∞

n
i=1

Var

w̃∗

i,γ ,nyij


i2
≤ C

∞
i=1

1
i2

< ∞,

fromwhich the first statement of this lemma follows. To prove the second statement, we only need to verify the Kolmogorov
condition for the elements of the i.i.d. vectors w̃∗

i,γ ,nyiy
′

i, i = 1, . . . , n. This condition holds because E[w̃∗

i,γ ,ny
2
ij1
y2ij2 ] is finite

for any j1, j2 = 1, . . . , v, again as a consequence of results on elliptical truncation under modelM0 [33]. �
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Theorem 1. Under M0 with known µ and Σ , the estimators µ̃∗
γ ,n and Σ̃∗

γ ,n are strongly consistent, i.e.

µ̃∗

γ ,n
a.s.
−→ µ

Σ̃∗

γ ,n
a.s.
−→ Σ,

when m, n → ∞ so that (6) holds.

Proof. Consider the location estimator. First, note that

µ̃∗

γ ,n =


n

W̃ ∗
γ ,n


1
n

n
i=1

w̃∗

i,γ ,nyi


. (18)

Given that the distribution of W̃ ∗
γ ,n is Binomial, W̃ ∗

γ ,n ∼ B(n, γ ), we have

n

W̃ ∗
γ ,n

a.s.
−→

1
γ

.

It then follows from Lemma 1 and the continuous mapping theorem [32, p. 24] that

µ̃∗

γ ,n
a.s.
−→ µ. (19)

A similar reasoning can be used to show that

Σ̃∗

γ ,n =
ncγ
W̃ ∗

γ ,n

1
n

n
i=1

w̃∗

i,γ ,n(yi − µ)(yi − µ)′
a.s.
−→ Σ . �

We now derive a result of independent interest, which will also be useful in Lemma 2 that follows. We show that the
FS weight of each unit at step γ , i.e. w̃i,γ ,n in (8), converges to the weight w̃∗

i,γ ,n defined through the γ -th quantile of the
χ2

v distribution. In this way the standard fitting subset of the FS, which is bounded by an empirical quantile of the squared
Mahalanobis distances, is shown to be asymptotically equivalent to a fitting subset bounded by an ellipsoid.

Theorem 2. Under M0 with known µ and Σ , for any i = 1, . . . , n, the sequence of weights for observation yi converges a.s. to
the weight (14):

|w̃i,γ ,n − w̃∗

i,γ ,n|
a.s.
−→ 0

when m, n → ∞ so that (6) holds.

Proof. Recall that

w̃i,γ ,n = I(d2i,n ≤ δ2
γ ,n) i = 1, . . . , n,

where δ2
γ ,n is the empirical quantile (9). Since the squared distances are an i.i.d. sample from the χ2

v distribution, it is then
a standard result [32, p. 75] that

δ2
γ ,n

a.s.
−→ χ2

v,γ (20)

whenm, n → ∞ so that (6) holds. Given (20), by definition

P(lim |δ2
γ ,n − χ2

v,γ | > 0) = 0. (21)

We can now study

P(lim |w̃i,γ ,n − w̃∗

i,γ ,n| > 0).

The latter corresponds, for any i = 1, . . . , n, to

P(lim I(δ2
γ ,n ≠ χ2

v,γ )),

which is equal to (21). Therefore, for any i = 1, . . . , n,

P(lim |w̃i,γ ,n − w̃∗

i,γ ,n| = 0) = 1. �

The following lemma extends the results on elliptical truncation of [33].
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Lemma 2. Under M0 with known µ and Σ , when m, n → ∞ so that (6) holds,

E(yi|w̃i,γ ,n = 1) = µn → µ (22)

Var(yi|w̃i,γ ,n = 1) = Σn → c−1
γ Σ . (23)

Furthermore, all moments of yiw̃i,γ ,n are finite.

Proof. Statements (22) and (23) follow from (20) and the continuous mapping theorem, since

E(yi|d2i,n ≤ δ2
γ ,n) → E(yi|d2i,n ≤ χ2

v,γ ) = µ

and

Var(yi|d2i,n ≤ δ2
γ ,n) → Var(yi|d2i,n ≤ χ2

v,γ ) = c−1
γ Σ .

The discontinuity in the conditional moments of yi, as a function of δ2
γ ,n, has zero probability measure at the limit, and thus

does not violate the hypotheses of the continuous mapping theorem.
To see that all moments of yiw̃i,γ ,n are finite, note that underM0 all moments of yi are finite. We have that for any κj ∈ N,

j = 1, . . . , v,

E


v

j=1

(yijw̃i,γ ,n)
κj


= E


v

j=1

y
κj
ij w̃i,γ ,n


= E


j

y
κj
ij |w̃i,γ ,n = 1


P(w̃i,γ ,n = 1).

The result then follows from the fact that conditioning to w̃i,γ ,n = 1 restricts the integrals involved in the cross-moments
of the components of yi to be computed over a bounded support. �

It is now possible to show consistency of the FS location and scatter estimators when the parameters are known. This
result is obtained by expressing the FS estimators as the product of two factors converging almost surely, along the lines of
the proof of Theorem 1. The main difference is that the sum W̃γ ,n is now fixed by design.

Theorem 3. Under M0 with known µ and Σ , when m, n → ∞ so that (6) holds the FS estimators of location and scatter, µ̃γ ,n

and Σ̃γ ,n, are strongly consistent.

Proof. By Lemma 2

E(w̃i,γ ,nyi) → γµ,

and

E{w̃i,γ ,n(yi − µ)(yi − µ)′} → γ c−1
γ Σ .

For what concerns the location estimator, we have that

µ̃γ ,n =


n

W̃γ ,n


1
n

n
i=1

w̃i,γ ,nyi


. (24)

It follows from (9) that

W̃γ ,n =

n
i=1

w̃i,γ ,n = m. (25)

Therefore, whenm, n → ∞ and (6) holds

n

W̃γ ,n
→

1
γ

.

For what concerns the second factor in (24), the random variables w̃i,γ ,nyi are now dependent because of constraint (25).
Instead of the classical Kolmogorov condition, we thus apply Theorem 2 of [9], which requires two conditions to establish
the SLLN for a sequence of dependent random variables.

To state the first, denote with Js, s = 1, 2, two arbitrary subsets of {1, . . . , n} such that, without loss of generality, for any
i1 ∈ J1 and i2 ∈ J2, we have i1 < i2, and for which

min{i : i ∈ J2} − max{i : i ∈ J1} ≥ k. (26)

Let as, s = 1, 2 denote two arbitrary vectors, each of dimension |Js|, whose sum of squares is finite, and

Ls(as) =


i∈Js

asiw̃i,γ ,nyi. (27)
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According to Bryc and Smolenski [9], we need to show that there exists a finite k > 0 such that when n → ∞

sup
a1,a2

cor(L1(a1), L2(a2)) < 1. (28)

To see (28), note that (26) implies that k − 1 elements of the vector w̃i,γ ,nyi are removed before computing (28). Condition
(28) does not hold if it is possible to predict any observation indexed in J2 with a linear combination of observations indexed
in J1. Given that yi comes from M0 and that for 0 < γ < 1

P(w̃i,γ ,n = 1) > 0 i = 1, . . . , n,

even if weights w̃i,γ ,n are dependent due to constraint (25) it is not possible to exactly predict any w̃i,γ ,nyi. Therefore, (28)
holds with k = 1.

The second condition in Theorem 2 of [9] is the extended Kolmogorov condition

∞
i=1

Var(w̃i,γ ,nyij)
i3/2

< ∞, ∀j = 1, . . . , v. (29)

To see (29), let C ′ be such that maxj Var(w̃i,γ ,nyij) ≤ C ′. Since C ′ < ∞ asymptotically, as a consequence of Lemma 2,

lim
n

n
i=1

Var(w̃i,γ ,nyij)
i3/2

≤ C ′

∞
i=1

1
i3/2

< ∞.

Therefore, we obtain that

1
n

n
i=1

w̃i,γ ,nyi
a.s.
−→ γµ,

from which strong consistency of µ̃γ ,n follows.
A similar proof can be used to show consistency of Σ̃γ ,n. One difference is that higher order moments are involved in

the above conditions, and those are finite as well due to distributional assumptions on yi and Lemma 2. Finally, we use the
continuous mapping theorem to show that yi − µ̃γ ,n gets closer and closer to yi − µ:

∥yi − µ̃γ ,n − (yi − µ)∥ = ∥µ̃γ ,n − µ∥
a.s.
−→ 0, (30)

because µ̃γ ,n is strongly consistent. Therefore, the a.s. consistency result for

cγ
n

i=1

w̃i,γ ,n

W̃γ ,n
(yi − µ)(yi − µ)′

holds for Σ̃γ ,n as well. �

A consequence of Theorem 3 is that

Var(µ̃γ ,n) → 0 Var(Σ̃γ ,n) → 0, (31)

and the same applies for the idealized estimators as a consequence of Theorem 1. We can also show that the FS and the
idealized estimators get closer and closer as the sample size grows.

Corollary 1. For fixed γ and m, n → ∞ in such a way that (6) holds

∥µ̃γ ,n − µ̃∗

γ ,n∥
a.s
−→ 0

∥Σ̃γ ,n − Σ̃∗

γ ,n∥
a.s.
−→ 0.

Proof. This is a consequence of Theorems 1 and 3, given that both estimators are strongly consistent and converge to the
same limit. �

We now derive some results concerning the generalized Mahalanobis squared distances

d̃2i,γ ,n = (yi − µ̃γ ,n)
′Σ̃−1

γ ,n(yi − µ̃γ ,n) i = 1, . . . , n, (32)

which specialize the general formula (5) to the case of estimators µ̃γ ,n and Σ̃γ ,n. These results are important because they
show that the distances d̃2i,γ ,n obtained from the FS estimators are asymptotically equivalent to the population Mahalanobis
distances (7), even if they are not independent for i = 1, . . . , n. Furthermore, they provide key ingredients for the case of
unknown parameters, to be addressed in the next section.
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Theorem 4. Under M0 with knownµ andΣ , for any i = 1, . . . , n, the sequence of squared distances for observation yi converges
a.s. to the population Mahalanobis distance defined in Eq. (7):

|d̃2i,γ ,n − d2i,n|
a.s.
−→ 0

when m, n → ∞ so that (6) holds.

Proof. See the Appendix. �

Theorem 5. Assume that model M0 holds with known µ and Σ . Let

F̃γ ,n(x) =
1
n

n
i=1

I(d̃2i,γ ,n ≤ x) (33)

be the empirical distribution function of the generalized Mahalanobis squared distances (32). Then, for each x > 0

F̃γ ,n(x)
a.s.
−→ Fχ2

v
(x)

when m, n → ∞ so that (6) holds.

Proof. See the Appendix. �

We conclude this section by stating two immediate and useful consequences of Theorems 4 and 5.

Corollary 2. Under M0 with known µ and Σ , for any i = 1, . . . , n,

d̃2i,γ ,n
d
−→ χ2

v .

Proof. The result is a straightforward implication of Theorem 4. �

Corollary 3. Let d̃2(1),γ ,n, d̃
2
(2),γ ,n, . . . , d̃

2
(n),γ ,n be the order statistics of the squared distances (32). Take 0 < γ ∗ < 1 and

δ̃2
γ ∗,γ ,n = d̃2(m∗),γ ,n, (34)

with m∗
= ⌊nγ ∗

⌋ as in (2). Under M0 with known µ and Σ ,

δ̃2
γ ∗,γ ,n

a.s.
−→ χ2

v,γ ∗ , (35)

where χ2
v,γ ∗ is the γ ∗-th quantile of the χ2

v distribution.

Proof. The result follows from Theorem 5 and the fact that χ2
v,γ ∗ is the unique solution of Fχ2

v
(x−) ≤ γ ∗

≤ Fχ2
v
(x) for any

0 < γ ∗ < 1. �

3. Case 2: fixed step with unknown parameters

We are now in the position to establish the properties of the FS estimators in the case where the model parameters are
unknown. For this purpose, we repeat most of the steps described in Section 2, with the classical convergence result (20)
replacedby (35) or by similar results. In the proofs that followwe thus only highlight the differenceswith respect to Section2.

Given the adaptive nature of the FS, when the parameters in (1) are unknown their estimators at step γ must be based
on the results of a previous step. As a consequence, we fix γ0 and γ such that 0 < γ0 < γ < 1. We also take

m0 = ⌊nγ0⌋ m = ⌊nγ ⌋, (36)

as in (2). Let µ̂γ0,n and Σ̂γ0,n be the estimators of the unknown parameters µ and Σ at step γ0. We make the following
assumption.

Assumption 1. Under M0 with unknown µ and Σ ,

µ̂γ0,n
a.s.
−→ µ Σ̂γ0,n

a.s.
−→ Σ, (37)

whenm0, n → ∞ so thatm0/n → γ0.
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In the setting of the FS, γ0 may represent either the initial step, so thatm∗
= m0, or any step prior to γ . Therefore, given

a sequence of steps 0 < γ0 < γ1 < · · · < γt < 1, we can iterate the arguments of this section to show that consistency
at step γt1 implies consistency at step γt2 , if t1 < t2. The only substantial implication of Assumption 1 is the requirement of
strong consistency for the estimators adopted in the initial step.

Note that García-Escudero and Gordaliza [19] assume weak convergence of µ̂γ0,n and Σ̂γ0,n with rate n−1/2, when
m0 = m∗, in order to derive the asymptotic distribution of the radius process. This process is defined through the estimators
µ̂γ0,n and Σ̂γ0,n for any trimming level 1− γ , even if γ ≠ γ0. For our purposes, Assumption 1 suffices with no requirements
on the rate. It thus also includes estimators with lower convergence rates, such as the Minimum Volume Ellipsoid. Our
contribution is to show that the strong consistency property (37) is maintained for any sequence of subsequent steps
γ0 < γ1 < γ2 . . . of the FS, when new step-specific estimators are obtained.

The assumption of consistent initial estimators, with rate n−1/2, is also made by Johansen and Nielsen [23] for the FS
in the regression context. This assumption is refined by Johansen and Nielsen [24], who show that a somewhat weaker
condition is sufficient for convergence of the univariate process defined by the FS model residuals. We may expect that
similar conditions on the rate of convergence of the initial estimators are needed in order to show weak convergence also
in the multivariate framework of this paper. However, an advantage of Assumption 1, which does not put any condition on
the rate of convergence, is to broaden the class of potential initial estimators. This point is important in practice, where the
use of computationally intensive estimators, like theMCD, as a starting point for the FSmight be toomuch time-consuming.
Even more important is the fact that the diagnostic power of the FS is enhanced when m∗

≪ n. In this case simple and
consistent estimators, but with unknown converge rate, might provide the only feasible starting point. Indeed, if we assume
no contamination so that model (1) holds for all the data, many robust estimators may be shown to be still consistent if
m∗/n → ∞, but their convergence rates may be more difficult to derive. A relevant application arises when the FS for
multivariate data is applied for the purpose of detecting unknown group structures in the data. In this case the FS is run
many times from different small starting subsets chosen at random [7], so that computational issues may become crucial.
Another useful consequence of Assumption 1 is that under this umbrella we can potentially use different estimators at
subsequent steps of the FS. For instance, we could legitimately alternate steps of the FS where the estimators are computed
following the standard formulae (3) and (4), with weights defined as in (39) below, with steps whereµ andΣ are estimated
in a different way, e.g. by robust S-estimators or by the Minimum Volume Ellipsoid, or even where the estimates are kept
constant, like in the radius process of [19].

If µ and Σ are unknown, progression in the FS from γ0 to γ is based on the generalized Mahalanobis squared distances

d̂2i,γ0,n = (yi − µ̂γ0,n)
′Σ̂−1

γ0,n(yi − µ̂γ0,n) i = 1, . . . , n. (38)

Therefore, the FS estimators at step γ are given by expressions (3) and (4), with the weights wi,γ ,n now defined as

ŵi,γ ,γ0,n = I(d̂2i,γ0,n ≤ δ̂2
γ ,γ0,n) i = 1, . . . , n, (39)

where δ̂2
γ ,γ0,n is the γ -th quantile among the n squared distances (38). Following (9), we take

δ̂2
γ ,γ0,n = d̂2(m),γ0,n,

where d̂2(1),γ0,n, d̂
2
(2),γ0,n

, . . . , d̂2(n),γ0,n are the order statistics of the squared distances (38), and m is defined as in (2) and in
(36). The FS estimators with weights (39) are denoted by µ̂γ ,γ0,n and Σ̂γ ,γ0,n. The scaling factor cγ in Σ̂γ ,γ0,n is the same as
in Σ̃γ ,n, and is given by (10).

We start by summarizing some useful properties of the generalized Mahalanobis squared distances d̂2i,γ0,n. These
properties arise from Assumption 1. They specialize Theorems 4 and 5, and the subsequent Corollaries, to a form which
is directly applicable to the FS estimators µ̂γ ,γ0,n and Σ̂γ ,γ0,n.

Lemma 3. Under M0 with unknownµ andΣ , whenm0, n → ∞ so that m0/n → γ0, the following holds if Assumption1 is true:

(a) for any i = 1, . . . , n, the sequence of squared distances for observation yi converges a.s. to the population Mahalanobis
distance defined in Eq. (7):

|d̂2i,γ0,n − d2i,n|
a.s.
−→ 0;

(b) if F̂γ0,n(x) =
1
n

n
i=1 I(d̂

2
i,γ0,n

≤ x), then

F̂γ0,n(x)
a.s.
−→ Fχ2

v
(x), for each x > 0;

(c) for any i = 1, . . . , n,

d̂2i,γ0,n
d
−→ χ2

v ;
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d) if 0 < γ ∗ < 1, δ̂2
γ ∗,γ0,n

= d̂2(m∗),γ0,n
and m∗

= ⌊nγ ∗
⌋ as in (36), then

δ̂2
γ ∗,γ0,n

a.s.
−→ χ2

v,γ ∗ .

Proof. Replace γ with γ0, µ̃γ ,n and Σ̃γ ,n with µ̂γ0,n and Σ̂γ0,n, d̃
2
i,γ ,n with d̂2i,γ0,n, in the proofs of Theorems 4 and 5, and in

those of Corollaries 2 and 3. �

The next two results consider the asymptotic properties of the empirical weights ŵi,γ ,γ0,n, i = 1, . . . , n, and their use in
elliptical truncation.

Theorem 6. Under Assumption 1 andmodel M0 with unknownµ andΣ , for any i = 1, . . . , n, the sequence of empirical weights
for observation yi converges a.s. to the weight (14):

|ŵi,γ ,γ0,n − w̃∗

i,γ ,n|
a.s.
−→ 0

when m,m0, n → ∞ so that m/n → γ and m0/n → γ0.

Proof. Repeat the proof of Theorem2with d̂2i,γ0,n in place of d2i,n, i = 1, . . . , n, and convergence (20) replaced by Lemma 3(d)
with γ ∗

= γ . �

Lemma 4. Under Assumption 1 and model M0 with unknown µ and Σ , if m,m0, n → ∞ so that m/n → γ and m0/n → γ0,

E(yi|ŵi,γ ,γ0,n = 1) → µ

Var(yi|ŵi,γ ,γ0,n = 1) → c−1
γ Σ .

Furthermore, all moments of yiŵi,γ ,γ0,n are finite.

Proof. The first two statements follow from Lemma 3(d) and the continuous mapping theorem. For the last statement,
repeat the proof of Lemma 2 with ŵi,γ ,γ0,n in place of w̃i,γ ,n. �

It is now possible to show consistency of the FS location and scatter estimators µ̂γ ,γ0,n and Σ̂γ ,γ0,n, along the lines of
Theorem 3.

Theorem 7. Under Assumption 1 and model M0 with unknownµ andΣ , if m,m0, n → ∞ so that m/n → γ and m0/n → γ0,
the FS estimators of location and scatter µ̂γ ,γ0,n and Σ̂γ ,γ0,n are strongly consistent.

Proof. Repeat the proof of Theorem 3 with ŵi,γ ,γ0,n in place of w̃i,γ ,n. Note that the additional source of dependence among
the weights ŵi,γ ,γ0,n implied by parameter estimation does not affect the applicability of Theorem 2 of [9]. In fact, Assump-
tion 1 ensures that, for any pair of linear combinations

L̂s(as) =


i∈Js

asiŵi,γ ,γ0,nyi s = 1, 2

such that


i∈Js a
2
si < ∞,

cor(L̂1(a1), L̂2(a2)) → cor(L1(a1), L2(a2)),

where L1(a1) and L2(a2) are the corresponding linear combinations when the parameters are known, as given in (27). There-
fore, we still have asymptotically

sup
a1,a2

cor(L1(a1), L2(a2)) < 1

for a finite k > 0. �

We note that, thanks to Theorem 7, also the squared distances

d̂2i,γ ,γ0,n = (yi − µ̂γ ,γ0,n)
′Σ̂−1

γ ,γ0,n(yi − µ̂γ ,γ0,n) i = 1, . . . , n (40)

share the good asymptotic properties given in Lemma 3, when m, n → ∞ so that m/n → γ . This extension of Lemma 3 is
straightforward to derive and is not detailed here. Nevertheless, it is crucial both for progressing in the search, whenmoving
from γ to a subsequent step, and for providing formal justification of the use of distances (40) for the detection of outliers
from modelM0 [30].

We conclude this section by discussing two issues that outline possible extensions of our work. Our first remark is that
the consistency properties derived in this paper can be seen as a first step towards studying the weak convergence of the
empirical process defined by µ̂γ ,γ0,n, as indexed by γ ∈ (0, 1], and similarly for Σ̂γ ,γ0,n. For this purpose, we would need
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• distributional convergence for each joint distribution over γ1, . . . , γT , where T is finite;
• asymptotic equicontinuity.

The latter is shown in [24] for the FS estimator in a univariate regression setting. Extension to the multivariate case is
straightforward, since condition (6) ensures that

µ̂γt1 ,γ0,n = µ̂γt2 ,γ0,n Σ̂γt1 ,γ0,n = Σ̂γt2 ,γ0,n,

if |γt1 − γt2 | < 1/n. Our estimators are thus stepwise constant, from which equicontinuity follows. On the other hand,
when γt2 > γt1 , there is a steady dependence between estimators obtained with γt2 on those obtained with γt1 , making it
hard to study the behavior of finite dimensional distributions. Uniform convergence over the intervals of continuity would
be implied by weak convergence. Another possibility is to establish uniform convergence directly. In this case we would
anyway need results about rates of convergence, which unfortunately do not seem straightforward to obtain in this context.

Our second remark is that we have stated the results relying on the multivariate normal model (1), given that we
have explicit expressions of all the relevant quantities in this setting. We speculate that our results could be extended to
elliptically contoured distributions with minor adjustments. Indeed, the analytic formula for the scaling factor of the scatter
estimate, which is given by expression (10) at the normalmodel, is also available for the general case of elliptically contoured
distributions [14, p. 165]. What is still unclear is the link between this general expression and results on elliptical truncation
under non-normal models. For instance, properties like (15), which play a crucial role in our framework, to the best of our
knowledge have been analytically derived only for the multivariate normal distribution. An important research goal to be
pursued in the futurewould thus be the systematic study of the effect of truncation under non-normal distributionalmodels,
which would provide the missing link.

4. Global robustness of the estimators

We now give a global robustness property of the FS estimators µ̂γ ,γ0,n and Σ̂γ ,γ0,n. In particular, we show that the
maximum proportion of nasty outliers that the estimators at step γ can tolerate is 1 − γ . This proportion is given by the
finite sample breakdown point [26], which for the location estimator µ̂γ ,γ0,n and the sample y = {y1, . . . , yn} is defined as

ϵ(µ̂γ ,γ0,n, y) = min
m∗≤n∗≤n


n∗

n
: sup ∥µ̂γ ,γ0,n − µ̂(n∗)

γ ,γ0,n∥ = ∞


. (41)

In (41), µ̂(n∗)
γ ,γ0,n is the FS estimator of µ computed on a modified sample y(n∗) in which a subset of n∗ among the original n

observations is replaced by arbitrary values, the supremum is taken over all possible modified samples y(n∗) and ∥∥ is the
Euclidean norm, as before. When considering the robustness of the estimator of scatter a different norm is required:

D(Σ̂γ ,γ0,n; Σ̂ (n∗)
γ ,γ0,n) = max


|λ1(Σ̂γ ,γ0,n) − λ1(Σ̂

(n∗)
γ ,γ0,n)|, |λv(Σ̂γ ,γ0,n)

−1
− λv(Σ̂

(n∗)
γ ,γ0,n)

−1
|


,

where Σ̂
(n∗)
γ ,γ0,n is the FS estimator of Σ computed on the modified sample y(n∗) and λj(·), j = 1, . . . , v, is the jth largest

eigenvalue of the corresponding matrix. The finite sample breakdown point of Σ̂γ ,γ0,n at y is

ϵ(Σ̂γ ,γ0,n, y) = min
m∗≤n∗≤n


n∗

n
: supD(Σ̂γ ,γ0,n; Σ̂ (n∗)

γ ,γ0,n) = ∞


. (42)

We suppose that the sample y is in general position, which means that no subset of v + 1 observations from y lies in
a hyperplane of dimension smaller than v. This condition is verified with probability 1 under Model M0. Furthermore, we
need an additional assumption about the estimators computed at step γ0.

Assumption 2. Takem0 ≥ ⌊(n + v + 1)/2⌋ and let γ0 = m0/n. We assume that

min

ϵ(µ̂γ0,n, y), ϵ(Σ̂γ0,n, y)


≥ 1 − γ0.

This assumption intuitively means that at step m0 we estimate both location and scatter with a degree of robustness
which is not smaller than 1−γ0. Since 1−γ0 represents the proportion of points trimmed by the FS at stepm0, Assumption 2
implies that gross outliers do not enter the fitting subset of the FS unless their number is very close to m0. In fact, if m0 =

⌊(n+ v + 1)/2⌋, the value 1− γ0 is the upper bound for the breakdown point of any affine equivariant estimator of Σ [17].
Therefore, µ̂γ ,γ0,n, y and Σ̂γ ,γ0,n, y will not be affected by such gross outliers if Assumption 2 holds. This condition might
thus be seen as the ‘‘robust’’ complement to Assumption 1 under contamination in the modified sample y(n∗).

Theorem 8. Let m > m0 and γ = m/n. Under Assumption 2, if y is in general position

ϵ(µ̂γ ,γ0,n, y) = ϵ(Σ̂γ ,γ0,n, y) = 1 − γ .
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Proof. Without loss of generality, suppose that contamination takes place in the first n∗ units. We thus write the modified
sample as

y(n∗)
= {y∗

1, . . . , y
∗

n∗ , yn∗+1, . . . , yn},

where y∗

i∗ , i
∗

= 1, . . . , n∗, denotes an arbitrary value in the contaminated subset. For what concerns the location estimator,
we have that

sup ∥µ̂γ ,γ0,n − µ̂(n∗)
γ ,γ0,n∥ = ∞ iff ∥y∗

i∗∥ = ∞ (43)

for at least one contaminated unit i∗ for which ŵi∗,γ ,γ0,n = 1, since


i ŵi,γ ,γ0,n = m > 0 by design. Condition (43) implies
that

d̂2i∗,γ0,n = ∞ (44)

for these contaminated units, thanks to Assumption 2. Write n∗
∞

≤ n∗ for the number of units for which (44) holds. By
definition (39), we obtain that the corresponding weights

ŵi∗,γ ,γ0,n = I(d̂2i∗,γ0,n ≤ δ̂2
γ ,γ0,n) = I(d̂2i∗,γ0,n ≤ d̂2(m),γ0,n) = 0 i∗ = 1, . . . , n∗

∞
,

unless n∗
∞

≥ n−m. Letting (44) hold for all contaminated units, i.e. considering theworst case n∗
= n∗

∞
, yields the statement

on ϵ(µ̂γ ,γ0,n, y).
A similar argument can also be applied to obtain ϵ(Σ̂γ ,γ0,n, y). In fact, for any v-dimensional vector b ≠ 0,

λ1(Σ̂γ ,γ0,n) = sup
b

b′Σ̂−1
γ ,γ0,nb

b′b
.

Therefore, under Assumption 2,

sup

|λ1(Σ̂γ ,γ0,n) − λ1(Σ̂

(n∗)
γ ,γ0,n)|


= ∞

only if ∥y∗

i∗∥ = ∞ for at least one unit for which ŵi∗,γ ,γ0,n = 1. Again, this cannot happen unless n∗
= n∗

∞
≥ n − m.

Similarly, under Assumption 2,

sup

|λv(Σ̂γ ,γ0,n)

−1
− λv(Σ̂

(n∗)
γ ,γ0,n)

−1
|


= ∞

only if, for at least n∗
= m − v units for which ŵi∗,γ ,γ0,n = 1, either we have

y∗

i∗ ∝ u,

where u = (1, . . . , 1)′, or it holds that

∃i ∈ {n∗
+ 1, . . . , n} : y∗

i∗ ∝ yi.

But this cannot happen if n∗ < n − m, because y is in general position. �

An immediate consequence of Theorem 8 is that the squared generalized Mahalanobis distances d̂2i,γ ,γ0,n
, defined in (40),

share the same global robustness property of the estimators, since

ϵ(d̂2i,γ ,γ0,n, y) = min

ϵ(µ̂γ ,γ0,n, y), ϵ(µ̂γ ,γ0,n, y)


= 1 − γ for i = 1, . . . , n.

Therefore, these distances are a natural ingredient for building robust diagnostic methods that are able to highlight
multivariate outliers, without suffering frommasking [21]. Empirical evidence of their performance for this purpose is given
by Riani et al. [30].

5. Empirical performance of the FS estimators

In the previous section we have shown theoretically the convergence of the FS estimators when m, n → ∞. We now
investigate empirically the speed of convergence as a function of the sample size n, and of the fraction γ = m/n of units
belonging to the fitting subset. Due to affine invariance of the squared distances d̂2i,γ ,γ0,n

, and thus of the weights ŵi,γ ,γ0,n,
we restrict our attention to data from the standardmultivariate normal distributionN(0, Iv). In what followswe take v = 5.
The results for other values of v are very similar and are not reported here.

In order to evaluate the performance of µ̂γ ,γ0,n and Σ̂γ ,γ0,n as estimators ofµ andΣ , we consider the followingmeasures:

• the squared bias of the location estimator, defined as eµ(bias) = ∥µ̂γ ,γ0,n∥
2;

• the variance of the location estimator, defined as eµ(var) = ∥µ̂γ ,γ0,n − µ̂γ ,γ0,n∥
2/(v − 1), where µ̂γ ,γ0,n is the overall

mean across the simulations;
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Fig. 1. Squared bias eµ(bias) (left panel) and variance eµ(var) (right panel) of the FS location estimator, as a function of γ , for n = 100 (solid line), n = 200
(dash dotted line), n = 500 (dotted lines), n = 1000 (dashed lines with round marker). Averages over 500 replications for each value of n.

• an error measure for the scatter estimator, defined as the logarithm of its condition number:

eΣ = log10(cond(Σ̂γ ,γ0,n)),

where cond(Σ̂γ ,γ0,n) = λ1(Σ̂γ ,γ0,n)/λv(Σ̂γ ,γ0,n) is the condition number of Σ̂γ ,γ0,n (see, e.g., [22]).

Clearly we would like these quantities to be as small as possible, when the data come from N(0, Iv). In order to evaluate the
error measures for a particular value of γ , we stop the search at γ and use the weights (39) to estimate both the centroid
µ̂γ ,γ0,n and the covariance matrix Σ̂γ ,γ0,n. In practice, the FS estimators are computed for all integers m = v + 1, . . . , n,
with γ = m/n. At each step we take the estimators obtained at the previous step as µ̂γ0,n and Σ̂γ0,n. As customary, the
algorithm is initialized by means of robust bivariate projections. The error measures are computed, and then recorded, on
each simulated sample. In our study we run 500 replications of the FS for each value of n.

Fig. 1 shows the simulation average of the squared bias (left panel) and of the variance (right panel) of the location
estimator, when γ = 0.35, 0.5, 0.65, 0.80, 0.95, 1, and n = 100, 200, 500, 1000. This figure clearly shows that the error
measures for the estimate of µ decrease both as a function of γ and as a function of the sample size. Furthermore, it is
interesting to note that for n = 100 the curves for two error measures flatten only when γ = 0.95. On the other hand,
when n = 1000, the curves seem to be virtually horizontal from γ = 0.65 onwards, but this effect is mainly due to the use
of the same scale in the vertical axis of the plots for different values of n.

Fig. 2 shows the monitoring of eΣ for the same values of γ and the four sample sizes considered in Fig. 1. We now show
the boxplots instead of the simulation average, in order to have an idea also of the distribution of the values throughout
the simulations. Clearly, the condition number decreases as n increases. The different scale in the four panels enables us to
understand that the shape of the curves of the condition number is the same independently of the sample size. We thus see
that the slope of the curve of the condition number levels off only when γ = 0.95.

The message which comes from Figs. 1 and 2 is that, while for large values of n accurate estimates of the parameters can
be found just considering a fixed percentage of central data (typically a bit larger than 50%), for small and moderate sample
sizes it is extremely important to use as many good observations as possible in order to reduce the variability of the error
estimates. In any case, independently from the sample size, the shape of the error measures remains the same. In order to
better understand the implications of this aspect, in Fig. 3 we show the boxplots of the distribution of values of eµ(bias) for
n = 100 (left panel) and n = 200 (right panel). In this figure the mean values of squared bias computed on all simulations
are shown in the boxplots as circles. In addition, in the plots we display as horizontal lines the values of squared bias for the
Minimum Covariance Determinant (MCD) estimator, based on a subset of ⌊(n + v + 1)/2⌋ observations (upper horizontal
line), and for the reweighted MCD estimator, which uses the quantile χ2

0.975,v as a threshold to determine the units forming
the new centroid. In the computation of the reweighted MCD, both the asymptotic consistency factor and the small sample
correction factor of [29] have been applied to the estimated covariance matrix at the first step. As expected, the precision of
the reweighted MCD estimator, given that it uses more observations, is greater than that of the raw MCD. Fig. 3 also shows
that the squared bias of the rawMCD estimator of location is comparable with that of the FS estimator with γ = 0.5. Finally,
it is interesting to note that the horizontal lines associated to the error level of the reweightedMCD estimator ofµ are below
those of the FS when γ ≤ 0.8, but are above those of the FS based on γ ≥ 0.95. This effect is more pronounced in the left
panel, where the sample size is smaller, rather than in the right panel.

In spite of its limited size, the conclusion that can be drawn from this simulation study is twofold. First, it confirms
the consistency properties of the FS estimators of µ and Σ , and it provides us with some guidance about the estimation
error as a function of both the sample size n and the ratiom/n. Second, it suggests the importance (especially for small and
moderate sample sizes) of adopting a procedurewhich uses an adaptive level of trimming, instead of considering just a fixed
percentage of data to estimate location and scatter.
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Fig. 2. Boxplots of the distribution of the logarithm of the condition number log10(cond(Σ̂γ ,γ0,n)), as a function of γ , for n = 100 (top left panel), n = 200
(top right panel), n = 500 (bottom left panel) and n = 1000 (bottom right panel). The boxplots are obtained from 500 replications for each value of n.

Fig. 3. Boxplots of the values of the squared bias for the FS estimator of location, as a function of γ , for n = 100 (left panel) and n = 200 (right panel).
The circles over the boxplots denote the average values. The horizontal dotted–dashed lines are associated with the squared bias for the MCD location
estimator (upper line) and the reweighted MCD (MCDr) location estimator (lower line). The boxplots and averages are obtained from 500 replications for
each value of n.

6. Discussion and open issues

In this workwe have studied some asymptotic properties of the Forward Search, a powerful generalmethod for detecting
anomalies in structured data, whose diagnostic power has been shown inmany statistical contexts, but forwhich theoretical
results are lacking in the multivariate case. Specifically, we have shown that the estimators of location and scatter obtained
from the Forward Search are strongly consistent when themultivariate normal model holds. We have started from the ideal
case where the model parameters are known, and then we have considered the effect of their estimation. We have also
obtained the finite sample breakdown point of these estimators.

Our results serve the purpose of motivating the use of the Forward Search in robust applied statistics and of providing
theoretical justification for its very good diagnostic properties. Furthermore, they allow us to compare the Forward
Search estimators with other well knownmultivariate high-breakdown techniques, for which similar properties have been
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established in the past. A preliminary study involving the Minimum Covariance Determinant estimator, and its reweighted
version, is described in this paper. More extensive comparisons are left for further research.

Our work does not complete the asymptotic analysis of the Forward Search for multivariate data, since there remain at
least two important questions to be addressed. The first one concerns the asymptotic distribution of the estimators of loca-
tion and scatter at a fixed step of the Forward Search. A way to achieve this goal could be to extend the results of [14,25,37],
among others, to the Forward Search context. Another major open problem is a detailed asymptotic analysis of the behavior
of Forward Search estimators under the general contamination model

M1 : yi ∼ ξG0 + (1 − ξ)G1 i = 1, . . . , n, (45)

where G0 stands for the Nv(µ, Σ) distribution which defines model (1), G1 is a contaminant distribution, and 0.5 ≤ ξ ≤ 1.
In fact, if the multivariate normal population defined by G0 and the contaminant population defined by G1 are ‘‘well

separated’’, we can see that the asymptotic breakdown point of the Forward Search estimators of µ and Σ becomes

1 − γ if ξ ≥ γ ,

0 if ξ < γ ,

when m, n → ∞ so that m/n → γ . Cerioli et al. [12] provide some simple examples where such a ‘‘separation’’ can
occur. Therefore, it is crucial to obtain a sound estimate of ξ under model M1, which would yield the best trimming level
1 − γ = 1 − ξ for the Forward Search estimators µ̂γ ,γ0,n and Σ̂γ ,γ0,n.

Despite its limited size, the simulation study reported in this paper has clearly shown the effect of different choices of γ
on the properties of the resulting estimators of multivariate location and scatter. A proposal for selecting ξ , and thus γ , is
made in [30]. However, further theoretical research on this topic is needed. We have studied the asymptotic properties of
the Forward Search estimators at each of a finite number of fixed steps, but we have not addressed the problem of coupling
these estimators with a stopping rule for the choice of the optimal γ , which would make the number of steps a random
variable. Furthermore, we could allow the trimming level 1 − γ in µ̂γ ,γ0,n and Σ̂γ ,γ0,n to vary continuously in a subset of
the unit interval, as in model (45). A careful study of the resulting asymptotic properties, as well as a comparison with the
corresponding radius process approach of [19], would require different tools and will be tackled in future work.
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Appendix. Proofs

Proof of Theorem 4. Theorem 3 ensures that the condition

Σ̃−1
γ ,n

a.s.
−→ Σ−1 (A.1)

is satisfied, because the mapping f defined by f (Σ̃γ ,n) = Σ̃−1
γ ,n is continuous with probability 1 at Σ̃γ ,n = Σ when Σ is

positive definite. For the same reason

Σ̃−1/2
γ ,n

a.s.
−→ Σ−1/2, (A.2)

where {Σ̃
−1/2
γ ,n }

′Σ̃
−1/2
γ ,n = Σ̃−1

γ ,n and {Σ−1/2
}
′Σ−1/2

= Σ−1. Furthermore, (A.2) implies component-wise convergence of the
matrix elements:

s̃j,l,γ ,n
a.s.
−→ sj,l ∀j, l = 1, . . . , v, (A.3)

where s̃j,l,γ ,n is the generic element of {Σ̃−1/2
γ ,n } and sj,l is the generic element of Σ−1.

We continue by writing the quadratic form (32) as

d̃2i,γ ,n = (yi − µ̃γ ,n)
′
{Σ̃−1/2

γ ,n }
′
{Σ̃−1/2

γ ,n }(yi − µ̃γ ,n)

and by considering the elements of the 1 × v vector

z ′

i,n = (yi − µ̃γ ,n)
′
{Σ̃−1/2

γ ,n }
′. (A.4)
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For this purpose, let µ̃j,γ ,n and zi,j,n, j = 1, . . . , v, be the jth element of vectors µ̃γ ,n and zi,n, respectively. Direct multiplica-
tion shows that

zi,j,n =

v
l=1

(yi,l − µ̃j,γ ,n)s̃j,l,γ ,n. (A.5)

From Theorem 3 we have that yi,j − µ̃j,γ ,n gets closer and closer to yi,j − µj as

|yi,j − µ̃j,γ ,n − (yi,j − µj)| = |µ̃j,γ ,n − µj|
a.s.
−→ 0, (A.6)

by the continuous mapping theorem. We can thus apply the continuous mapping theorem again to show that(yi,j − µ̃j,γ ,n)s̃j,l,γ ,n − (yi,j − µj)sj,l
 a.s.
−→ 0, ∀j, l = 1, . . . , v, (A.7)

and  v
l=1

(yi,j − µ̃j,γ ,n)s̃j,l,γ ,n −

v
l=1

(yi,j − µj)sj,l

 a.s.
−→ 0 for j = 1, . . . , v, (A.8)

by virtue of (A.3). Therefore,(yi − µ̃j,γ ,n)
′
{Σ̃−1/2

γ ,n }
′
− (yi − µ)′{Σ−1/2

}
′
 a.s.
−→ 0.

We can similarly prove thatΣ̃−1/2
γ ,n (yi − µ̃j,γ ,n) − Σ−1/2(yi − µ)

 a.s.
−→ 0.

Hence,(yi − µ̃j,γ ,n)
′
{Σ̃−1/2

γ ,n }
′Σ̃−1/2

γ ,n (yi − µ̃j,γ ,n) − (yi − µ)′{Σ−1/2
}
′Σ−1/2(yi − µ)

 a.s.
−→ 0, (A.9)

again for the continuous mapping theorem, which completes the proof.

Proof of Theorem 5. The distances d̃2i,γ ,n are identically distributed underM0. Then, by Theorem 4

E

F̃γ ,n(x)


= P(d̃2i,γ ,n ≤ x) → Fχ2

v
(x).

Now define γx = F̃γ ,n(x) and let δ̃2
γx,γ ,n be the γx-th quantile of the n squared distances d̃2i,γ ,n. For i = 1, . . . , n, also define

w̃i,γx,γ ,n = 1 if d̃2i,γ ,n ≤ δ̃2
γx,γ ,n, and w̃i,γx,γ ,n = 0 otherwise. We can thus write (33) as

F̃γ ,n(x) =
1
n

n
i=1

w̃i,γx,γ ,n.

For any x > 0, there is a unique value γ ∗
∈ (0, 1) such that

δ̃2
γx,γ ,n = d̃2(m∗),γ ,n,

where, following definitions (2) and (9), m∗
= ⌊γ ∗n⌋ and d̃2(m∗),γ ,n is the m∗-th order statistic among the squared distances

d̃2i,γ ,n. Therefore, we have

w̃i,γx,γ ,n = w̃i,γ ∗,γ ,n = I(d̃2i,γ ,n ≤ δ̃2
γ ∗,γ ,n). (A.10)

The weights w̃i,γx,γ ,n are dependent because they must satisfy the constraint
n

i=1

w̃i,γx,γ ,n = m∗,

as a consequence of (A.10). Furthermore, if γx = γ ∗ they must satisfy the additional constraint

n
i=1

w̃i,γx,γ ,nd̃2i,γ ,n =
m∗v

cγ ∗

, (A.11)

which arises from the fact that the observations for which w̃i,γ ∗,γ ,n = 1 are those used in computing µ̃γ ∗,n and Σ̃γ ∗,n. For
these observations constraint (A.11) is a consequence of parameter estimation [6, p. 86]. We can thus apply a reasoning



A. Cerioli et al. / Journal of Multivariate Analysis 126 (2014) 167–183 183

similar to that of Theorem 3 to show that the correlation condition (28) is verified with either k = 2 or k = 3. Finally, we
note that the support of w̃i,γx,γ ,n is bounded, and thus Var(w̃i,γx,γ ,n) is finite for any x > 0. Furthermore, for given x, it is
constant for i = 1, . . . , n. Hence,

Var(w̃i,γx,γ ,n)

∞
i=1

1
i3/2

< ∞,

and we can apply Theorem 2 of [9] to obtain the result.
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