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Abstract We provide a selective view of some key statistical concepts that underlie
the different approaches to multivariate outlier detection. Our hope is that apprecia-
tion of these concepts will help to establish a unified and widely accepted framework
for outlier detection.

1 Introduction

The identification of outliers is an important step of any analysis of multivariate
data. In a multivariate setting, this task poses more challenging problems than in the
simpler case of a single variable for at least three basic reasons:

� outlyingness should be judged with respect to several (possibly many) dimen-
sions simultaneously;

� there is no natural ordering of multivariate data on which ‘extremeness’ of an
observation can be ascertained;

� simple graphical diagnostic tools like the boxplot are difficult to construct in
more than one or two dimensions (Zani et al. 1998).

It is thus not surprising that the systematic study of multivariate outliers has a
long history in the statistical literature and has led to remarkably different points
of view. See, e.g., Hadi et al. (2009) and Morgenthaler (2006) for recent reviews
on robust methods and outlier detection. In these and other reviews, it is acknowl-
edged that the concern for outliers or grossly wrong measurements is probably as old
as the experimental approach to science. The earliest reported historical references
usually date back to the seventeenth century, with the first precise specifications
subsequently given by Gauss and Legendre. Perhaps less known is the fact that the
same concern was also present in Ancient Greece more than 2,000 years ago, as
reported by Thucydides in his History of The Peloponnesian War (III 20, 3–4).1

1 According to Thucydides, in 428 B.C. the Plataeans, besieged by the Spartans, excluded extreme
measurements when estimating the height of the walls that their enemies had built around the city.
In this way, they managed to break the siege.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_26, c� Springer-Verlag Berlin Heidelberg 2011

231



232 A. Cerioli et al.

In the modern statistical era, until the early 1990s, alternative methods were
developed following three essentially distinct streams of research, well documented
in the classical book by Barnett and Lewis (1994, Chap. 7): robust techniques for
multivariate outlier accommodation; formal tests of hypotheses for precise out-
lier identification and, thirdly, less formal diagnostic tools for exploratory analysis
including intuitive inspection of the data. With a bit of humour, the supporters of
these alternative schools of outlier methodology were sometimes called the robust-
niks, the testniks and the diagnostniks, respectively. The reconciliation of different
‘outlier philosophies’ was already seen as an ideal by Rousseeuw and Zomeren
(1990) in their rejoinder twenty years ago, but it has still to be reached. Sect. 4
provides a suggestion in that direction.

It is not the goal of this paper to provide a comprehensive overview of the wealth
of methods developed for the purpose of multivariate outlier identification. Rather,
the idea is to guide the reader through a few key statistical concepts that underlie
the different approaches and to see how they evolved over the years. Our hope is
that appreciation of these concepts will help us in establishing a unified and widely
accepted framework for outlier detection.

2 Outlier Detection and Testing

In a seminal paper Wilks (1963) laid down the statistical foundations of multivariate
outlier detection. Let y D .y1; : : : ; yn/

0 be a sample of v-dimensional observations
from N.�;˙/. The sample mean is O� and the unbiased sample estimate of ˙ is Ȯ .
Wilks derived the exact distribution of the n scatter ratios,

Ri D j.n � 2/ Ȯfigjj.n � 1/ Ȯ j�1 i D 1; : : : ; n;

where Ȯfig is the unbiased estimate of ˙ computed after deleting yi . It is easily
seen (Atkinson et al. 2004, pp. 44–46) that Ri is inversely related to the squared
Mahalanobis distance of observation yi

d 2
i D .yi � O�/0 Ȯ �1.yi � O�/; (1)

so that the distributional results for Ri hold for d 2
i as well. In particular,

d 2
i D

.n � 1/2
n

.1 �Ri / � .n � 1/2
n

Beta

�
v

2
;
n � v � 1

2

	
i D 1; : : : ; n: (2)

Wilks also showed how the smallest ratioR.1/, or equivalently the largest squared
distance d 2

.n/
, can be used to test the outlyingness of the corresponding observation.

This multivariate outlier detection rule focuses on the intersection hypothesis that
no outlier is present in the data

H0s W fy1 � N.�;˙/g \ fy2 � N.�;˙/g \ : : : \ fyn � N.�;˙/g; (3)
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against the alternative that one is present. The candidate outlier is the most remote
observation, i.e., the observation with the largest squared Mahalanobis distance (1).
The size of a test of H0s , say 
 , represents the proportion of good data sets that are
wrongly declared to contain outliers. Simultaneity is dealt with in Wilks (1963) by
introducing a Bonferroni bound on the probability that the test statistic exceeds a
given threshold.

Simulations show that Wilks’ outlier detection method, combining the scaled
Beta distribution (2) with a Bonferroni bound, has very good control of the size of
the test of H0s . It can thus be taken as a benchmark for comparison with alternative
procedures under the null hypothesis of no outliers.

However, the squared Mahalanobis distances (1) suffer from masking. If a few
outliers contaminate the data, it is unlikely that the largest distances d 2

.n/
; d 2

.n�1/
; : : :

will be associated with the atypical observations because O� and Ȯ will be grossly
distorted by these outliers.

Wilks (1963) extended his deletion method to the case of two observations, but
dealing with an unknown and possibly large number of outliers rapidly becomes
infeasible. The same problem affects any other backward procedure, such as the
sequential application of Wilks’ test suggested by Caroni and Prescott (1992).
Moving backwards, all the outliers will be missed if d 2

.n/
is masked.

3 Robust Distances from High-Breakdown Estimators

The use of high-breakdown estimators of � and ˙ in the place of the classical ones
has proved to be a practical solution to the problem of masking. Popular choices
for such estimators include the Minimum Covariance Determinant estimator,
S-estimators and projection-based techniques. See Hubert et al. (2008) or Maronna
et al. (2006, Chap. 6) for recent reviews.

Let Q� and Q̇ be the chosen high-breakdown estimators of � and ˙ . The
corresponding squared robust Mahalanobis distances are

Qd 2
i D .yi � Q�/0 Q̇ �1.yi � Q�/ i D 1; : : : ; n: (4)

The outliers in y are revealed by their large distances from the robust fit provided
by Q� and Q̇ , without suffering from masking. The key issue is that outlying obser-
vations have null or negligible weight in the computation of Q� and Q̇ . Therefore,
they cannot ‘attract’ these estimates and maintain a large value of Qd 2

i .
The need to avoid masking directs the outlier detection problem to the choice of

suitable cut-offs for the robust squared distances (4), instead of the classical critical
values computed from (2). However simple this step may seem, it has produced
some surprising consequences.

First, the focus has shifted from the intersection hypothesis (3) to the problem of
testing the n null hypotheses

H0i W yi � N.�;˙/; i D 1; : : : ; n: (5)
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The most common approach has been to test all these hypotheses individually at
a specified size 0:01 � ˛ � 0:05, with ˛ D 0:025 being perhaps the most pop-
ular choice. This approach, which does not take multiplicity of tests into account,
increases the probability of detecting truly contaminated observations, but the user
must be prepared to declare at least one outlier (and often many more) in most data
sets of realistic size. In other words, the user must be prepared to invest a large sum
of money (if all the suspected outliers are discarded) or a large amount of time (if the
suspected outliers are checked one by one) to accomplish the process of multivariate
outlier detection, even when the expected number of contaminated observations is
small.

The tendency of an outlier detection method to label good observations as outliers
is called swamping. We believe that the ability to control the degree of swamp-
ing is an important property for the practical usefulness of an outlier detection
method. Major application areas where even a moderate number of false outliers
may have disastrous consequences include anti-fraud analysis and statistical qual-
ity control. For instance, outliers are of great interest in the analysis of trade data
arising in the European Union market (Riani et al. 2008), because some of them
may correspond to fraudulent transactions. Since there are hundreds of transactions
to be inspected over thousands of markets, ignoring the multiplicity of tests would
lead to a plethora of false signals for anti-fraud services, thus making substantial
investigation of possible frauds impractical.

Another major shortcoming of the use of the squared robust distances Qd 2
i is that

their exact distribution is unknown. The required cut-offs are then usually computed
from their asymptotic �2

v distribution, although the adequacy of this approximation
can be very poor even in moderately large samples, especially when the number of
dimensions increases. This behaviour has been shown in many simulation studies:
see, e.g., Becker and Gather (2001), Cerioli et al. (2009), Hardin and Rocke (2005)
and Riani et al. (2009).

The liberality of the �2
v distribution for the purpose of approximating the squared

robust distances Qd 2
i adds further swamping to the individual testing framework of

the n hypotheses H0i . It also makes the simultaneous testing of these hypotheses
in (3) even more problematic, because the corresponding cut-offs lie in the extreme
tail of the true but unknown distribution of the robust distances. This behaviour is
in sharp contrast with the excellent null performance of the classical Mahalanobis
distances (1). It also obviously calls for better approximations to the finite sample
distribution of the squared robust distances Qd 2

i when no outlier is present in the data.
Hardin and Rocke (2005) suggest a way to approximate the first two moments of

the distribution of the squared robust distances Qd 2
i . However, simultaneous testing

of the n hypothesis (5) requires cut-off values which are in the extreme tail of the
distribution. In that case information on E. Qd 2

i / and var. Qd 2
i / is often not enough to

obtain reliable rejection regions and it is preferable to estimate the cut-offs directly.
A good finite sample approximation to the required thresholds under the intersection
hypothesis (3) is proposed by Cerioli et al. (2009). Their idea is to calibrate the
asymptotic cut-off values by Monte Carlo simulation. Calibration is first performed
for some representative values of n and v and then extended to any n and v by
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parametric non-linear interpolation. The resulting outlier detection rule has very
good control of the size of the test of no outliers even in situations where space
is very sparsely filled (e.g., n D 50; v D 10). The method is very general, as in
principle it can be applied to any choice of Q� and Q̇ , and also easy to implement,
once the parameters of the interpolation function are made available. However, the
power may be rather low, since the technique does not allow for the variability of
distances in the tail of the distribution.

Cerioli (2010) provides a power improvement by introducing an accurate approx-
imation to the distribution of one-step reweighted robust distances. This approxima-
tion is based on a scaled Beta distribution mimicking (2) for the units not suspected
of being outliers, and on a scaled F distribution for the units which are trimmed in
the reweighting step. Also this method provides good control of the simultaneous
size of the n outlier tests (5). Therefore, it can be useful in all the application fields
where allowing for the multiplicity of tests is an important issue.

Attaining the right size through distributional results yields more powerful rules
than through calibration of cut-off values. Furthermore, a substantial increase in
power can be obtained by controlling the number of false discoveries only when all
the data come from the prescribed null distribution. Cerioli (2010) suggests an out-
lier identification rule that tolerates some degree of swamping, but only when there
is strong evidence that some contamination is present in the data. This follows the
idea that the level of swamping provided by repeated testing of (5), although dele-
terious in ‘good’ data sets, may still be acceptable in a contaminated framework.
Such a view is often sensible when the probability of observing a contaminated
sample is small. On the contrary, if the sample is predicted to have some contam-
ination with high probability, but the expected number of contaminants is small,
other approaches could be followed. As shown in Cerioli and Farcomeni (2011), by
controlling the False Discovery Rate it is possible to develop outlier identification
rules for which the acceptable number of false discoveries depends explicitly on the
number of outliers found.

4 Is a Reconciliation Possible?

Wilks’ outlier test and the high-breakdown identification rules described by Hubert
et al. (2008) have opposite attitudes towards two basic issues of multivariate outlier
detection: the null hypothesis to be tested in order to label an observation as an
outlier and the approach towards the control of the number of false discoveries. A
reconciliation of these alternative philosophies can be found in the Forward Search
method of Atkinson et al. (2004, 2010).

The basic idea of the Forward Search (FS) is to start from a small, robustly
chosen, subset of the data and to fit subsets of increasing size, in such a way
that outliers and other observations not following the general structure are clearly
revealed by diagnostic monitoring. Letm0 be the size of the starting subset. Usually
m0 D vC 1 or slightly larger. Let S .m/� denote the subset of data fitted by the FS at
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step m (m D m0; : : : ; n). At that step, outlyingness of each observation yi can be
evaluated through the squared distance

d 2
i�.m/ D fyi � O��.m/g0 Ȯ�.m/�1fyi � O��.m/g; (6)

where O��.m/ and Ȯ�.m/ are the estimates of � and ˙ computed from S
.m/� . The

squared distances d 2
1�.m/; : : : ; d 2

n�.m/ are then ordered to obtain the fitting subset at
stepmC1. Usually one observation enters the subset at each step, but sometimes two
or more, when one or more then leave. Such occurrences are indicative of changes
in structure or of clusters of outliers entering the subset.

Whilst S .m/� remains outlier free, the squared distances d 2
i�.m/ will not suffer

from masking and swamping. Therefore, they are a robust version of the classical
Mahalanobis distance d 2

i . The main diagnostic quantity computed from these robust
distances is d 2

imin�.m/, where

imin D arg mind 2
i�.m/ i … S .m/�

is the observation with the minimum squared Mahalanobis distance among those
not in S .m/� . The main idea is that the distance of the closest observation entering
the subset at step mC 1 will be large if this observation is an outlier. Its peculiarity
will be clearly revealed by a peak in the forward plot of d 2

i�.m/.
The early developments of the FS aimed essentially to provide powerful plots

for investigating the structure of regression and multivariate data, using quantities
such as d 2

imin�.m/. Therefore, the FS might be seen a contribution of the ‘diagnostic’
school of outlier detection. However, it is paramount that any diagnostic quantity
can result in a formal test if its null distribution is known and appropriate thresholds
can be defined. The statistic d 2

imin�.m/ can be treated as a squared deletion distance
onm�1 degrees of freedom, whose distribution is (Atkinson et al. 2004, pp. 43–44)

.m2 � 1/v
m.m� v/

Fv;m�v; (7)

while S .m/� remains outlier free. This statistic is based on Ȯ�.m/, which is a biased
estimate of˙ , being calculated from them observations in the subset that have been
chosen as having them smallest distances. As a result, Riani et al. (2009) propose a
formal outlier test based on the FS by making use of the envelopes

Vm;˛=�T .m/; (8)

where Vm;˛ is the 100˛% cut-off point of the .m C 1/th order statistic from the
scaled F distribution (7) and the factor

�T .m/
�1 D m=n

P.X2
vC2 < �

2
v;m=n

/
(9)
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allows for trimming of the n�m largest distances. In (9) �2
v;m=n

is them=n quantile

of �2
v and X2

vC2 � �2
vC2:

The FS test for multivariate outlier identification based on thresholds derived
from (8) does not require computation of the high-breakdown estimators Q� and Q̇ .
Furthermore, like the methods described in Sect. 2, this is a simultaneous test which
has good control of the size of the test of no outliers (3). This property is made
possible by the use of accurate finite sample distributional results for the squared
Mahalanobis distances computed along the search. Nevertheless, the FS test does
not suffer from masking, because it is the algorithm itself which is robust. Thus the
FS test can cope with the same contamination rate as the high-breakdown methods
sketched in Sect. 3.

We conclude that the Forward Search can provide a reconciliation of the three
classical approaches to outlier detection introduced in Sect. 1. Being based on a
flexible strategy in which the proportion of trimming is determined by the data, it
enjoys high power. A further bonus of the Forward Search is its suitability for being
easily adapted to cope with many different methodologies, including other multi-
variate techniques, linear and non-linear regression and correlated data modelling.
For instance, by allowing a level of trimming smaller than 0.5, we believe that the
Forward Search has the greatest potential among robust techniques to become a
comprehensive approach through which cluster analysis and outlier detection could
be performed under the same umbrella.
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