
Random Start Forward Searches with Envelopes
for Detecting Clusters in Multivariate Data

Anthony Atkinson1

Department of Statistics
London School of Economics

a.c.atkinson@lse.ac.uk

Marco Riani & Andrea Cerioli 2

Dipartimento di Economia
Università di Parma
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Abstract: During a forward search the plot of minimum Mahalanobis distances of
observations not in the subset provides a test for outliers. However, if clusters are
present in the data, their simple identification requires that there are searches that
initially include a preponderance of observations from each of the unknown clusters.
We use random starts to provide such searches, combined with simulation envelopes
for precise inference about clustering.
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1 Introduction

The forward search is a powerful general method for detecting unidentified sub-
sets and multiple masked outliers and for determining their effect on models fitted
to the data. The search for multivariate data is given book length treatment by
Atkinson et al. (2004). To detect clusters they use forward searches starting from
subsets of observations in tentatively identified clusters. The purpose of this paper
is to demonstrate the use of randomly selected starting subsets for cluster detection
that avoid any preliminary data analysis. The goal is a more automatic method of
cluster identification.

2 Mahalanobis Distances and the Forward Search

The main tools that we use are plots of various Mahalanobis distances. The
squared distances for the sample are defined as

d2
i = {yi − µ̂}T Σ̂−1{yi − µ̂}, (1)

where µ̂ and Σ̂ are estimates of the mean and covariance matrix of the n observations.
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In the forward search the parameters µ and Σ are estimated by maximum like-
lihood applied to a subset of m observations, yielding estimates µ̂(m) and Σ̂(m).
From this subset we obtain n squared Mahalanobis distances

d2
i (m) = {yi − µ̂(m)}T Σ̂−1(m){yi − µ̂(m)}, i = 1, . . . , n. (2)

We start with a subset of m0 observations which grows in size during the search.
When a subset S(m) of m observations is used in fitting, we order the squared
distances and take the observations corresponding to the m + 1 smallest as the new
subset S(m + 1). Usually this process augments the subset by one observation, but
sometimes two or more observations enter as one or more leave.

In our examples we look at forward plots of quantities derived from the distances
di(m). These distances tend to decrease as n increases. If interest is in the latter
part of the search we may use scaled distances

d sc
i (m) = di(m) ×

(
|Σ̂(m)|/|Σ̂(n)|

)1/2v

, (3)

where v is the dimension of the observations y and Σ̂(n) is the estimate of Σ at the
end of the search.

To detect outliers we examine the minimum Mahalanobis distance amongst ob-
servations not in the subset

dmin(m) = min di(m) i /∈ S(m), (4)

or its scaled version dmin(m) sc(m). In either case let this be observation imin. If
observation imin is an outlier relative to the other m observations, the distance (4)
will be large compared to the maximum Mahalanobis distance of the m observations
in the subset.

3 Minimum and Ordered Mahalanobis Distances

Now consider the ordered Mahalanobis distances with d[k](m) the kth largest
distance when estimation is based on the subset S(m). In many, but not necessarily
all, steps of the search

d[m+1](m) = dmin(m). (5)

Instead of using dmin(m) as an outlier test, we could use the value of d[m+1](m). In
this section we describe when the difference in the two distances can arise and what
the lack of equality tells us about the presence of outliers or clusters in the data. We
then use simulation to compare the null distribution of tests in the forward search
based on the two distances.

Lack of equality in (5) can arise because the observations in S(m) come from
ordering the n distances di(m − 1) based on S(m − 1) not on S(m). The effect is
most easily understood by considering the case when the observation added in going
from S(m−1) to S(m) is the first in a cluster of outliers. In that case the parameter

estimates µ̂(m) and Σ̂(m) may be sufficiently different from µ̂(m− 1) and Σ̂(m− 1)



Figure 1: Envelopes from 10,000 simulations of forward searches with multivariate
normal data when n = 200 and v = 6. Left-hand panel - elliptical starts: continuous
lines, the order statistic d[m+1](m); dotted lines, dmin(m), the minimum distance
amongst observations not in the subset. Right-hand panel - plots of dmin(m): dotted
lines, elliptical starts as in the left-hand panel; continuous lines, random starts. 1,
2.5, 5, 50, 95, 97.5 and 99 % envelopes
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that the other observations in the cluster will seem less remote. Indeed, some may
have smaller distances than some of those in the subset. More formally, we will have

dmin(m) < d[k](m) k ≤ m, (6)

for one or more values of k. Then the difference

g1(m) = dmin(m) − d[m](m) (7)

will be negative, whereas when (5) holds, which it typically does in the absence of
outliers,

g2(m) = d[m+1](m) − d[m](m) = dmin(m) − d[m](m) (8)

is positive. The forward plot of g1(m) and g2(m) is called a gap plot, appreciable
differences between the two curves indicating the entry of a group of outliers or of
a new cluster of observations into the subset. At such moments interchanges may
occur when one or more of the observations in S(m) leave the subset as two or more
enter to form S(m + 1). A more detailed discussion of the ordering of observations
within and without S(m) is on pp. 68-9 of Atkinson et al. (2004). The gap plot for
the Swiss banknote data, which contains two clusters, is on p.118.

The above argument suggests that, for a single multivariate population with
no outliers, (5) will hold in most steps of the search and that use of d[m+1](m) or
of dmin(m) as an outlier test will give identical results. To demonstrate this we
show in the left-hand panel of Figure 1 forward plots of simulated percentage points
of the empirical distribution of the unscaled versions of the two quantities from
10,000 simulations of 200 observations from a six-dimensional normal distribution.
The continuous curves are for d[m+1](m), whereas dmin(m) is represented by dotted
lines. There is no discernible difference over the whole search in the median and
upper percentage points of the distribution. There is some difference in the lower



percentage points where the average values of dmin(m) are slightly lower. This is
explained because, in the earlier stages of the search there are a few samples in
which the observations are not well ordered and the subset is unstable, so that
condition (6) holds. That the difference between the two distributions is only in the
lowest tails shows that such behaviour is comparatively rare. Since we use the upper
tails of the distribution for detection of outliers, the figure confirms that the test is
indifferent to the use of d[m+1](m) or of dmin(m). In the remainder of this paper we
only consider the minimum distances dmin(m).

4 Elliptical and Random Starts

When the observations come from a single multivariate normal population with
some outliers, these outlying observations enter at the end of the search. To start the
search under these conditions Atkinson et al. (2004) use the robust bivariate boxplots
of Zani et al. (1998) to pick a starting set S∗(m0) that excludes any two-dimensional
outliers. The boxplots have elliptical contours, so we refer to this method as the
elliptical start. However, if there are clusters in the data, the elliptical start may lead
to a search in which observations from several clusters enter the subset in sequence in
such a way that the clusters are not revealed. Searches from more than one starting
point are in fact needed to reveal the clustering structure. Typically it is necessary to
start with an initial subset of observations from each cluster in turn, when the other
clusters are revealed as outliers. An example using the data on Swiss banknotes
is in Chapter 1 of Atkinson et al. (2004). In this example finding initial subsets
in only one of the two clusters requires a preliminary analysis of the data. Such
a procedure is not suitable for automatic cluster detection. We therefore instead
run many forward searches from randomly selected starting points, monitoring the
evolution of the values of dmin(m) as the searches progress.

In order to interpret the results of such plots we again need simulation envelopes.
The right-hand panel of Figure 1 repeats, in the form of dotted lines, the envelopes
for dmin(m) from the left-hand panel, that is with elliptical starts. The continuous
lines in the figure are for the values of dmin(m) from random starts. At the start
of the search the random start produces some very large distances. But, almost
immediately, the distances for the random start are smaller, over the whole distrib-
ution, than those from the elliptical start. This is because the elliptical start leads
to the early establishment of subsets S(m) from the centre of the distribution. But,
on the other hand, the subsets S R (m) from the random start may contain some
observations not from the centre of the distribution. As a consequence, the estimate
of variance will be larger than that from the elliptical start and the distances to all
units will be smaller. As the search progresses, this effect decreases as the S R (m)
for individual searches converge to the S(m) from the elliptical start. As the fig-
ure shows, from just below m = 100 there is no difference between the envelopes
from the two searches. Further, for appreciably smaller values of m inferences about
outliers from either envelope will be similar.

The results of this section lead to two important simplifications in the use of
envelopes in the analysis of multivariate normal data. One is that procedures based
on either d[m+1](m) or on dmin(m) are practically indistinguishable. The other is
that the same envelopes can be used, except in the very early stages of the search,



Figure 2: Forward plots of dmin(m) for 500 searches with random starting points.
Left-hand panel, Swiss banknote data showing two groups and outliers; the searches
shown in grey always contain units from both groups. Right-hand panel, Swiss heads
data, a homogeneous sample. An arbitrarily selected search is shown in black. 1,
2.5, 5, 50, 95, 97.5 and 99 % envelopes from 10,000 simulations
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whether we use random or elliptical starts. If we are looking for a few outliers, we will
be looking at the end of the search. If we are detecting clusters, their confirmation
involves searches of only the cluster members so that, as we see in §6, we are again
looking only at the end of the search.

5 Swiss Banknotes and Swiss Heads

There are two hundred observations in the Swiss banknote data. The notes have
been withdrawn from circulation and contain 100 notes believed to be genuine and
100 probable forgeries, on each of which six measurements were made. The left-
hand panel of Figure 2 contains the results of 500 forward searches from randomly
selected starting subsets with m0 = 10. For each search we have plotted the outlier
test dmin(m), the minimum unscaled Mahalanobis distance amongst observations
not in the subset. Also included in the plot are 1, 2.5, 5, 50, 95, 97.5 and 99 %
simulation envelopes for dmin(m) when the observations come from a single six-
dimensional normal distribution.

The first feature of the plot is that, from m around 150, all searches follow the
same trajectory, regardless of starting point. This is empirical justification of the
assertion of Atkinson et al. (2004) that the starting point is not of consequence in
the latter part of the search. The end of the search shows a group of 20 outliers,
most of which, in fact, come from Group 2, the forgeries (there seem to have been
two forgers at work). The peak around m = 98 is for searches containing only units
from Group 1. At these values of m the outliers from Group 1 and observations
from Group 2 are all remote and have large distances. Because of the larger number
of outliers from Group 2, the peak for this cluster comes earlier, around m = 85.
The searches that do not give rise to either peak always contain units from both
clusters and are non-informative about cluster structure. They are shown in grey in
the figure.



This plot shows the clear information that can be obtained by looking at the
data from more than one viewpoint. It also shows how quickly the search settles
down: the first peak contains 70 searches and the second 62. Fewer searches than
this will have started purely in one cluster; because of the way in which units are
included and excluded from the subset, the searches tend to produce subsets located
in one or other of the clusters.

The left-hand panel of the figure can indeed be interpreted as revealing the clus-
ters. But we also need to demonstrate that we are not finding structure where none
exists. The right-hand panel of the figure is again a forward plot of the minimum
distance of observations not in the subset, but this time for the 200 observations
of six-dimensional data on the size of Swiss heads also analysed by Atkinson et al.
(2004). This plot shows none of the structure of clustering that we have found in
the banknote data. It however does show again how the search settles down in the
last one third, regardless of starting point.

The plot in the left-hand panel of Figure 2 leads to the division of the data
into two clusters, the units in the subsets just before the two peaks. Once the data
have been dissected in this way, the procedures described in Atkinson et al. (2004)
can be used to explore and confirm the structure. For example, their Figure 3.30
is a forward plot of all 200 Mahalanobis distances when the search starts with 20
observations on genuine notes; in Figure 3.35 the search starts with 20 forgeries. In
both these plots, which are far from identical, the structure of two groups and some
outliers is evident. However, in their Figure 3.28, in which the search starts with a
subset of units from both groups, there is no suggestion of the group structure.

6 Bridge Data

In their §7.5 Atkinson et al. (2004) introduce the “bridge” data; 170 two-dimensional
observations that consist of a dispersed cluster of 80 observations, a separate tight
cluster of 60 observations and an intermediate bridge joining the two groups con-
sisting of 30 observations. The data are plotted in their Figure 7.18. An important
feature of these data without the bridge is that the cluster structure is not detected
by very robust statistical methods which fit to a subsample coming from both clus-
ters and so fail to reveal the clustered nature of the data. We first use these data
as a second example of the power of random starts to indicate clustering. We then
show how the repeated use of envelopes for varying sample sizes n can lead to the
virtually exact determination of cluster membership.

Figure 3 shows plots of dmin(m) for 500 searches with random starting points.
The general structure is that, from around m = 50, there are two trajectories.
The upper one, which at this point contains units from the compact group of 60
observations, has a peak at m = 61. The lower trajectory initially contains units
from the dispersed group of 80 observations and then, for larger m, neighbouring
units from the bridge are included. There follows a large interchange of units when
most of those from the dispersed group are removed from the subset and, from m
= 95, both trajectories are the same; the subset subsequently grows by inclusion of
units from the dispersed group.

We now consider a careful analysis of the trajectory of dmin(m) using subsets of
the data of increasing sizes identified from Figure 3 as giving the upper trajectory,



Figure 3: “Bridge” data: dmin(m) for 500 searches with random starting points.
The peak at m = 61 comes from searches that contain only units in the compact
group. The other main trajectory is for searches based on the dispersed group
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that is seemingly coming from the compact group. To discuss individual observations
we use the ordering imposed by the forward search, notated as observation [i]. The
top-left panel of Figure 4 is for 500 searches with random starts using the first 60
units to enter the subset, so the envelopes, which stop at m = 59 are found by
simulations with n = 60. The trajectory lies within the simulated envelopes; there
is no evidence of any outlier. In fact the trajectory is a little too flat at the end, as
though a large, but not outlying, observation or two has been incorrectly excluded.

In fact, the first 60 observations in the search consist of 59 from Group 1 and
one from the bridge. Of course, because the data are simulated with random error,
group membership can be overlapping. The upper-right panel in the figure is for n
= 61, with new simulation envelopes from this value of n. It is important in the
exact detection of outliers that the upwards curve towards the end of the search is
sensitive to sample size. Addition of observation [61] (observation 118 in Table A.15
of Atkinson et al., 2004) causes an upwards jump in the trajectory, although not a
sufficiently large jump to take the trajectory outside the envelopes.

Observation [61] is the last from Group 1. Addition of observation [62] (161),
shown in the lower-left panel of the figure, takes observation [61] partially outside
the envelopes, although observation [62] remains inside. Finally, the plot for the first
63 observations shows observation [61] well outside all envelopes, with the trajectory
returning inside the envelope.



Figure 4: “Bridge” data: dmin(m) for 500 searches with random starting points
for n = 60, 61, 62 and 63 observations giving the upper trajectory in Figure 3. The
first 60 observations are shown to belong to a homogenous group. 1, 5, 50, 95, and
99 % envelopes
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The behaviour of the trajectory in the lower plots is typical of the effect of adding
a cluster of different observations from those in the subset earlier in the search, which
was discussed in §3. What these plots do show is that observation [61] is indeed an
outlier and that the first 60 units form a homogeneous group. The next stage in
the analysis would be to remove these sixty observations and to run further series
of searches with random starts to identify any remaining structure.

7 The Importance of Envelopes

The analysis in this paper has depended crucially on the use of simulation en-
velopes in the forward search, a feature missing from our books Atkinson and Riani
(2000) and Atkinson et al. (2004). The envelopes used here are similar to those de-
scribed by Riani and Atkinson (2007) for testing for outliers in multivariate normal
data. Since they are looking for outliers from a single population, they only use
elliptical starts, rather than the random starts we use here to detect clusters. For
large samples in high dimensions, the repeated simulation of envelopes for increasing
sample sizes, as in §6, can be excessively time consuming. Riani and Atkinson (2007)
describe methods for numerical approximation to the envelopes, particularly for the



scaled distances (3). They also give theoretical results, based on order statistics
from scaled F distributions, that give excellent approximations to the envelopes,
even for moderate n and v.
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