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43100 Parma, Italy, mriani@unipr.it, andrea.cerioli@unipr.it

Abstract. During a forward search from a robustly chosen starting point the plot
of maximum Mahalanobis distances of observations in the subset may provide a
test for outliers. This is not the customary test. We obtain distributional results
for this distance during the search and exemplify its use. However, if clusters are
present in the data, searches from random starts are required for their detection.
We show that our new statistic has the same distributional properties whether the
searches have random or robustly chosen starting points.
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1 Introduction

The forward search is a powerful general method for detecting systematic or
random departures from statistical models, such as those caused by outliers
and the presence of clusters. The forward search for multivariate data is
given book-length treatment by Atkinson, Riani and Cerioli (2004). To detect
outliers they study the evolution of Mahalanobis distances calculated during
a search through the data that starts from a carefully selected subset of
observations. More recently Atkinson and Riani (2007) suggested the use of
many searches starting from random starting points as a tool in the detection
of clusters. An important aspect of this work is the provision of bounds
against which to judge the observed values of the distances. Atkinson and
Riani (2007) use simulation for this purpose as well as providing approximate
numerical values for the quantiles of the distribution.

These theoretical results are for the minimum Mahalanobis distance of
observations not in the subset used for fitting when the starting point of the
search is robustly selected. In this paper we consider instead the alternative
statistic of the maximum Mahalanobis distance amongst observations in the
subset. We derive good approximations to its distribution during the forward
search and empirically compare its distribution to that of the minimum dis-
tance, both for random and robust starts. We find for the maximum distance,
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but not for the minimum, that the distribution of the distance does not de-
pend on how the search starts. Our ultimate purpose is a more automatic
method of outlier and cluster identification.

We start in §2 with an introduction to the forward search that emphasises
the importance of Mahalanobis distances in outlier detection. Some introduc-
tory theoretical results for the distributions of distances are in §3. Section 4
introduces the importance of random start searches in cluster detection. Our
main theoretical results are in §5 where we use results on order statistics
to derive good approximations to the distribution of the maximum distance
during the search. Our methods are exemplified in §6 by the analysis of data
on horse mussels. The comparison of distributions for random and elliptical
starts to the search is conducted by simulation in §7.

2 Mahalanobis distances and the forward search

The tools that we use for outlier detection and cluster identification are plots
of various Mahalanobis distances. The squared distances for the sample are
defined as

d2
i (µ̂, Σ̂) = {yi − µ̂}T Σ̂−1{yi − µ̂}, (1)

where µ̂ and Σ̂ are estimates of the mean and covariance matrix of the n
observations.

In the forward search the parameters µ and Σ are replaced by their stan-
dard unbiased estimators from a subset of m observations, yielding estimates
µ̂(m) and Σ̂(m). From this subset we obtain n squared Mahalanobis distances

d2
i (m) = {yi − µ̂(m)}T Σ̂−1(m){yi − µ̂(m)}, i = 1, . . . , n. (2)

We start with a subset of m0 observations which grows in size during the
search. When a subset S(m) of m observations is used in fitting, we order
the squared distances and take the observations corresponding to the m + 1
smallest as the new subset S(m + 1). In what we call ‘normal progression’
this process augments the subset by one observation, but sometimes two or
more observations enter as one or more leave.

In our examples we look at forward plots of quantities derived from the
distances di(m). These distances tend to decrease as n increases. If interest
is in the latter part of the search we may use scaled distances

d sc
i (m) = di(m) ×

(
|Σ̂(m)|/|Σ̂(n)|

)1/2v

, (3)

where v is the dimension of the observations y and Σ̂(n) is the estimate of
Σ at the end of the search.

To detect outliers Atkinson et al. (2004) and Atkinson and Riani (2007)
examined the minimum Mahalanobis distance amongst observations not in
the subset

dmin(m) = min di(m) i /∈ S(m), (4)
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or its scaled version d sc
min(m). In either case let this be observation imin(m).

If observation imin(m) is an outlier relative to the other m observations, the
distance (4) will be large compared to its reference distribution.

In this paper we investigate instead the properties of the maximum Ma-
halanobis distance amongst the m observations in the subset

dmax(m) = max di(m) i ∈ S(m), (5)

letting this be observation imax(m). Whether we monitor dmax(m) or
dmin(m) the search is the same, progressing through the ordering of d2

i (m).

3 Minimum and maximum Mahalanobis distances

We now consider the relationship between dmin(m) and dmax(m) as outlier
tests. This relationship depends on the subsets S(m) and S(m + 1).

Let the kth largest ordered Mahalanobis distance be d[k](m) when esti-
mation is based on the subset S(m). In normal progression

d[m+1](m) = dmin(m) (6)

and S(m + 1) is formed from S(m) by the addition of observation imin(m).
Likewise, in normal progression this will give rise to the largest distance
within the new subset, that is

d[m+1](m + 1) = dmax(m + 1) = dimin(m)(m + 1). (7)

The distance dimin(m)(m+ 1) is that for the new observation imin(m) when
the parameters are estimated from S(m + 1). The consequence of (7) is that
both dmax(m + 1) and dmin(m) are tests of the outlyingness of observation
imin(m).

Although both statistics are testing the same hypothesis they do not have
the same numerical value and should be referred to different null distribu-
tions. In §5 we discuss the effect of the ranking of the observations on these
distributions as well as the consequence of estimating µ and Σ from a subset
of the observations. For estimates using all n observations dmax(n) is one of
the distances in (1). Standard distributional results in, for example, Atkinson
et al. (2004, §2.6) show that

d2
i (µ̂, Σ̂) = d2

i (n) ∼ (n− 1)2

n
Beta

(
v

2
,
n− v − 1

2

)
. (8)

On the other hand, d2
min(n − 1) is a deletion distance in which the pa-

rameters are estimated, in general, with the omission of observation i. The
distribution of such distances is

d2
(i) ∼

n

(n− 1)
v(n− 2)

(n− v − 1)
Fv,n−v−1, (9)



450 Atkinson, A.C. et al.

although the distribution of d2
min(n− 1) depends on the order statistics from

this distribution. For moderate n the range of the distribution of d2
i (n) in

(8) is approximately (0, n) rather than the unbounded range for the F dis-
tribution of the deletion distances. As we shall see, the consequence is that
the distribution of d2

max(m) has much shorter tails than that of d2
min(m),

particularly for small m.
Our argument has been derived assuming normal progression. This occurs

under the null hypothesis of a single multivariate normal population when
there are no outliers or clusters in the data, so that the ordering of the obser-
vations by closeness to the fitted model does not alter appreciably during the
search. Then we obtain very similar forward plots of dmax(m) and dmin(m),
even if they have to be interpreted against different null distributions. In fact,
we do not need the order to remain unchanged, but only that imin(m) and
imax(m + 1) are the same observation and that the other observations in
S(m+ 1) are those that were in S(m). Dispersed outliers likewise do not ap-
preciably affect the ordering of the data. This is however affected by clusters
of observations that cause appreciable changes in the parameter estimates
as they enter S(m). A discussion of the ordering of observations within and
without S(m) is on pp. 68-9 of Atkinson et al. (2004).

4 Elliptical and random starts

To find the starting subset for the search Atkinson et al. (2004) use the robust
bivariate boxplots of Zani, Riani and Corbellini (1998) to pick a starting
set S∗(m0) that excludes any two-dimensional outliers. The boxplots have
elliptical contours, so we refer to this method as the elliptical start. However,
if there are clusters in the data, the elliptical start may lead to a search
in which observations from several clusters enter the subset in sequence in
such a way that the clusters are not revealed. Searches from more than one
starting point are then needed to reveal the clustering structure. If we start
with an initial subset of observations from each cluster in turn, the other
clusters are revealed as outliers. However, such a procedure is not suitable for
automatic cluster detection. Atkinson and Riani (2007) therefore instead run
many forward searches from randomly selected starting points, monitoring
the evolution of the values of dmin(m) as the searches progress. Here we
monitor dmax(m).

As the search progresses, the examples of Atkinson and Riani (2007) show
that the effect of the starting point decreases. Once two searches have the
same subsets S(m) for some m, they will have the same subsets for all succes-
sive m. Typically, in the last third of the search the individual searches from
random starts converge to that from the elliptical start. The implication is
that the same envelopes can be used, except in the very early stages of the
search, whether we use random or elliptical starts. If we are looking for a few
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outliers, we will be looking at the end of the search. However, the envelopes
for dmin(m) and dmax(m) will be different.

5 Envelopes from order statistics

For relatively small samples we can use simulation to obtain envelopes for
dmax(m) during the search. For larger samples we adapt the method of Ri-
ani, Atkinson and Cerioli (2007) who find very good approximations to the
envelopes for dmin(m) using order statistics and a result of Tallis (1963) on
truncated multivariate normal distributions.

Let Y[m] be the mth order statistic from a sample of size n from a univari-
ate distribution with c.d.f. G(y). From, for example Lehmann (1991, p. 353)
and Guenther (1977), the required quantile of order γ of the distribution of
Y[m] say ym,n;γ can be obtained as

ym,n;γ = G−1

(
m

m + (n−m + 1)x2(n−m+1),2m;1−γ

)
, (10)

where x2(n−m+1),2m;1−γ is the quantile of order 1 − γ of the F distribution
with 2(n−m + 1) and 2m degrees of freedom. Riani et al. (2007) comment
that care needs to be taken to ensure that the numerical calculation of this
inverse distribution is sufficiently accurate as m → n, particularly for large
n and extreme γ.

We now consider our choice of G(x), which is different from that of Riani
et al. (2007). We estimate Σ on m− 1 degrees of freedom. The distribution
of the m distances in the subset can, from (8), be written as

d2
i (m) ∼ (m− 1)2

m
Beta

(
v

2
,
m− v − 1

2

)
, i ∈ S(m). (11)

The estimate of Σ that we use is biased since it is calculated from the m
observations in the subset that have been chosen as having the m smallest
distances. However, in the calculation of the scaled distances (3) we ap-
proximately correct for this effect by multiplication by a ratio derived from
estimates of Σ. So the envelopes for the scaled Mahalanobis distances derived
from dmax(m) are given by

Vm,γ =

√
(m− 1)2

m

√
ym,n;γ, (12)

with G the beta distribution in (11).
For unscaled distances we need to correct for the bias in the estimate

of Σ. We follow Riani et al. (2007) and consider elliptical truncation in the
multivariate normal distribution. From the results of Tallis (1963) they obtain
the large-sample correction factor

cFS(m) =
m/n

P (X2
v+2 < χ2

v,m/n)
, (13)
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with χ2
v,m/n the m/n quantile of χ2

v and X2
v+2 a chi-squared random vari-

able on v + 2 degrees of freedom. Envelopes for unscaled distances are then
obtained by scaling up the values of the order statistics

V ∗
m,γ = cFS(m)Vm,γ .

Figure 1 shows the agreement between simulated envelopes (continuous
lines) and theoretical envelopes (dotted lines) for dmax(m) when n = 1000.
Scaled distances are in the upper panel; agreement between the two sets of
envelopes is excellent throughout virtually the whole range. Agreement for
the unscaled distances in the lower panel of the figure is less good, but is
certainly more than satisfactory for inferences about outliers at least in the
last half of the search.

Unfortunately, the inclusion of Σ̂(n) in the expression for scaled distances
(3) results in small distances in the presence of outliers, due to the inflation
of the variance estimate and to consequent difficulties of interpretation. For
practical data analysis we have to use the unscaled distances, which are less
well approximated.

6 Horse mussels

As an example of the uses of elliptical and random starts in the analysis
of multivariate data we look at measurements on horse mussels from New
Zealand introduced by Cook and Weisberg (1994, p. 161) who treat them as
regression with muscle mass, the edible portion of the mussel, as response.
They focus on independent transformations of the response and of one of
the explanatory variables. Atkinson et al. (2004, §4.9) consider multivariate
normality obtained by joint transformation of all five variables.

There are 82 observations on five variables: shell length, width, height
and mass and the mass of the mussels’ muscle, which is the edible part.

We begin with an analysis of the untransformed data using a forward
search with an elliptical start. The left-hand panel of Figure 2 monitors
dmin(m), whereas the right-hand panel monitors dmax(m). The two sets
of simulation envelopes were found by direct simulation of 5,000 forward
searches. The figure shows how very different the two distributions are at
the beginning of the search. That in the left-hand panel for dmin(m) is de-
rived from the unbounded F distribution (9) whereas that for dmax(m) in
the right-hand panel is derived from the beta distribution (11).

The two traces are very similar once they are calibrated by the envelopes.
They both show appreciable departure from multivariate normality in the last
one third of the search. Since we are selecting observations by their closeness
to the multivariate normal model, we expect departure, if any, to be at the
end of the search. Even allowing for the scaling of the two plots, the maximum
distances seem to show less fluctuation at the beginning of the search. For
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Fig. 1. Envelopes for Mahalanobis distances dmax(m) when n = 1000 and v = 5.
Dotted lines from order statistics, continuous lines from 5,000 simulations. Upper
panel scaled distances, lower panel unscaled distances. Elliptical starts. 1%, 50%
and 99% points.
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Fig. 2. Horse mussels: forward search on untransformed data. Left-hand panel
dmin(m), right-hand panel dmax(m). Elliptical starts; 1%, 50% and 99% points
from 5,000 simulations.

much of the rest of the paper we focus on plots of the maximum Mahalanobis
distances dmax(m).

We now analyse the data using a multivariate version of the paramet-
ric transformation of Box and Cox (1964). As a result of their analy-
sis Atkinson et al. (2004) suggest the vector of transformation parameters
λ = (0.5, 0, 0.5, 0, 0)T ; that is, the square root transformation for y1 and y3

and the logarithmic transformation for the other three variables. We look at
forward plots of dmax(m) to see whether this transformation yields multi-
variate normality.

The upper-left panel of Figure 3 shows the maximum distance for all
n = 82 observations for the transformed data. The contrast with the right-
hand panel of Figure 2 is informative. The plot still goes out of the 99%
envelope at the end of the search, but the number of outliers is much smaller,
now only around 5.

The last five units to enter are those numbered 37, 16, 78, 8 and finally 48.
The plot of the maximum distance in the upper-right panel of Figure 3 shows
that, with these five observations deleted, the last value just lies below the
99% point of the distribution. We have found a multivariate normal sample,
after transformation, with five outliers. That there are five outliers, not four,
is confirmed in the lower panel of Figure 3 where observation 37 has been re-
included. Now the plot of maximum distances goes outside the 99% envelope
at the end of the search.

The limits in figures like 3 have been simulated to have the required
pointwise level, that is they are correct for each m considered independently.
However, the probability that the observed trace of values of dmax(m) ex-
ceeds a specific bound at least once during the search is much greater than
the pointwise value. Atkinson and Riani (2006) evaluate such simultaneous
probabilities; they are surprisingly high.
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Fig. 3. Horse mussels: forward search on transformed data. Plots of dmax(m) for
three different sample sizes. Upper-left panel n = 82; upper-right panel, observa-
tions 37, 16, 78, 8 and 48 removed (n = 77). Lower panel, observation 37 re-included
(n = 78). Elliptical starts; 1%, 50% and 99% points from 5,000 simulations. There
are five outliers.

7 Elliptical and random starts

We have analysed the mussels data and investigated the properties of
dmax(m) and dmin(m) using searches with elliptical starts. Finally we look
at the properties of plots of both distances when random starts are used, for
example to aid in the identification of clusters.

The upper panel of Figure 4 presents a comparison of simulated envelopes
for random and elliptical starts for dmax(m) from data with the same dimen-
sions as the mussels data. For this small data set there is no operationally
important difference between the two envelopes. The important conclusion
is that, for larger data sets, we can use the approximations of §5 based on
order statistics whether we are using random or elliptical starts.

The surprising conclusion that we obtain the same envelopes for searches
from elliptical or random starts however does not hold when instead we moni-
tor dmin(m). The lower panel of Figure 4 repeats the simulations for dmin(m).
Now there is a noticeable difference, during the first half of the search, be-
tween the envelopes for random and those from elliptical starts.

We now consider the implications of this difference on the properties of
individual searches. The left-hand panel of Figure 5 repeats the simulated
envelopes for elliptical starts from the upper panel of Figure 4 and adds 250
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Fig. 4. Simulated envelopes for Mahalanobis distances when n = 82 and v = 5.
Upper panel, dmax(m), lower panel dmin(m) Dotted lines from elliptical starts,
continuous lines from random starts. 1%, 50% and 99% points from 5,000 simula-
tions.
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trajectories of distances for dmax(m) for simulations from random starting
points. The simulated values nicely fill the envelope, although there are a
surprising number of transient peaks above the envelope. The right-hand
panel of the figure repeats this process of envelopes from elliptical starts and
trajectories from random starts but for the minimum distances dmin(m).
Now, as we would expect from Figure 4, the simulated values sit a little low
in the envelopes. If a subset contains one or more outliers, these will give rise
to a too large estimate of Σ. As a consequence, some of the distances of units
not included in the subset will be too small and the smallest of these will be
selected as dmin(m). On the contrary, if outliers are present in S(m) when
we calculate dmax(m), the distance that we look at will be that for one of
the outliers and so will not be shrunken due to the too-large estimate of Σ.
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Fig. 5. Simulated envelopes from elliptical starts for Mahalanobis distances when
n = 82 and v = 5 with 250 trajectories from random starts. Left-hand panel
dmax(m), right-hand panel dmin(m).

Our justification for the use of random start forward searches was that
searches from elliptical starts may not detect clusters in the data if these start
from a subset of units in more than one cluster. We have however analysed the
mussels data using values of dmax(m) from elliptical starts. Our conclusion,
from Figure 3, was that after transformation there were 77 units from a
multivariate normal population and five outliers. We checked this conclusion
using random start forward searches with dmax(m) and failed to detect any
clusters.

The purpose of this paper has been to explore the properties of the max-
imum distance dmax(m). We have found its null distribution and obtained
good approximations to this distribution for use in the forward search.The
lack of dependence of this distribution on the starting point of the search is
an appealing feature. However, we need to investigate the properties of this
measure when the null distribution does not hold. One particular question is
whether use of dmax(m) provides tests for outliers and clusters that are as
powerful as those using the customary minimum distance dmin(m).
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