
Forward Search

Introduction

The forward search is a powerful robust statistical
method for exploring the relationship between data
and fitted models. It is a development of the methods
described in the articles on Residuals and Diagnos-
tics that aids the discovery of clusters of observations
and previously unidentified important subsets of the
data as well as revealing any groups of outliers.

In this article, we give examples of the use of
the forward search for regression and generalized
linear models. These applications, together with the
material on transformations of data covered in the
article Fan Plot and the extension to nonlinear
regression, are described by Atkinson and Riani [1].
We also give an example involving multivariate
data, a topic extensively covered in [3].

Regression and Residuals

The forward search orders the observations by close-
ness to the assumed model, starting from a small
subset of the data and increasing the number of obser-
vations m used for fitting the model. Outliers and
small unidentified subsets of observations enter at the
end of the search.

We write the multiple regression model as

ym = Xβ + ε, (1)

where y is the n× 1 vector of responses, β is the
p × 1 vector of parameters, and it is assumed that
the additive errors of observation ε are independently
distributed with constant variance σ 2. Also in (1), X
is the n× p matrix of carriers, that is, of explana-
tory variables and perhaps functions of them, such
as quadratics and interaction terms.

It is helpful to list the various stages of the forward
search.

1. Notation. The vector of p parameters β is esti-
mated by least squares applied to subsets of the
observations. For an arbitrary subset of m observa-
tions, the estimate is denoted β̂(m). For a subset
S∗(m) of size m chosen by the forward search, the
estimate is written β̂(m∗).

2. Starting the Search. The search starts from a
small subset of size m0; usually m0 = p or perhaps
p + 1. To find the starting subset S∗(m0), we ran-
domly select 1000 subsamples of size m0. The initial
subset S∗(m0) provides the least median of squares
estimator β̂(m∗0), that is, it minimizes the median
squared residual (Rousseeuw [5]) of the observations
over the 1000 samples.

3. Moving Forward in the Search. When the m

observations constituting S∗(m) are used in fitting,
the fitted values from the estimate β̂(m∗) yield n

least-squares residuals e(m∗). We order the squared
residuals e2(m∗) and take the observations corre-
sponding to the m+ 1 smallest as the new subset
S∗(m+ 1). Usually, this process augments the sub-
set by one observation, but sometimes two or more
observations enter as one or more leave. This may
also happen at the beginning of the search, where
S∗(m0) is chosen to minimize the median squared
residual, not to find the subset yielding the m0 +
1 smallest squared residuals. Because of this very
robust starting point and the form of the search, out-
liers, if any, tend to enter as m approaches n.

4. Monitoring the Search. If any quantity is of
interest when it is calculated for the complete set of
n observations, we can monitor its evolution during
the forward search. In our example, we first look at
a forward plot of the residuals e(m∗), scaled by the
final estimate of σ . Examples of forward plots of
other quantities of interest, such as estimates of the
parameters β and σ 2 are given by Atkinson and Riani.

The analysis of the data on mandible length [6] in
the article on Goodness of Fit using simple regres-
sion shows appreciable evidence of nonnormality of
the residuals. The normal plot of the least-squares
residuals in Figure 3 of the article “Goodness of Fit”
shows three large negative residuals and two further
residuals that are also rather large.

This structure is apparent in the forward plot of the
residuals in Figure 1. Units 165, 166, and 149 have
large negative residuals throughout the search. Units
146 and 167 also have appreciable negative residuals
for much of the search. Working backwards, the last
units to join the search are these five, in order 165,
166, 149, 146, and 167. These are the five negative
residuals visible in the Q–Q plot in Goodness of
Fit, which is of the unscaled version of the residuals
at the end of the search in Figure 1. The forward
search shows that, in this example, the residual plot,
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Figure 1 Mandible length data, first-order model: forward plot of scaled residuals. There are five large negative residuals
for much of the search, but those for units 146 and 167 are masked at the end of the search

Subset size m

S
ca

le
d 

re
si

du
al

s

0 50 100 150

−4

−2

0

2

164

165

166

149

145,146

167

1
7

165

166
149

145,146

164
167

71

Figure 2 Mandible length data, second-order model, logged response: forward plot of scaled residuals. Four units, 164
to 167, behave differently from the rest, which have an approximately normal distribution

when all observations are fitted, identifies most of
the structure of the residuals. The values of x and
y for these units is clear from the scatter plot of
Figure 5 of the article on Diagnostics. If the last three
units, which are shown as open circles or crosses in
the plot, are excluded, the straight line fitted to the
data becomes such that unit 167 has an appreciable
negative residual. As the forward plot shows, this
residual is reduced when the last three units enter
the subset. There is therefore some masking of the
outlying nature of this unit.

The units with large residuals identified in this
analysis are not all of those plotted with open circles
in Figure 5 of the article Diagnostics. One reason is
that these were identified as being influential obser-
vations, rather than having large residuals. A second
reason is that that analysis was for a logged response
with a second-order model. Figure 2 shows the for-
ward plot of the residuals from this model.

Four units are highlighted in Figure 2. If we ignore
them, the forward plot of the residuals is virtually
symmetrical throughout the search, with no other
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appreciable outliers. The most negative residuals are
those for units 149, 7, 1, 145, and 146. But these
values do not change much during the search and, as
the Q–Q plot in Figure 1 of the article on Diagnos-
tics shows, these are not particularly extreme values
when compared with order statistics from a normal
distribution. The four highlighted units in the figure
are units 164 to 167. They are highlighted because
their behavior is very different. Initially, they all have
large negative residuals, but by the end of the search,
the residuals are all appreciably smaller, two having
become positive. These units are those for the four
oldest fetuses. It seems as if the model toward the
end of the search may be being altered by their pres-
ence and so produces small residuals. Certainly, this
would not be surprising as such extreme points in X

space will be leverage points, a property amplified by
fitting a quadratic model. Figure 2 of the article on
Diagnostics shows how extreme these leverage val-
ues are. A question we then have to consider is how
the evidence for a quadratic model depends on these
four units.

Forward Added Variable T Test

If the fitted model and data agree, the parameter esti-
mates should be reasonably constant throughout the
forward search. These estimates are orthogonal to the
residuals used to order the entry of units into the sub-
set S∗(m). The same is not true of the estimate of σ 2,
which, being the sum of squared residuals, increases
during the search as increasingly outlying observa-
tions are included in the subset. As a result, the t tests
(see Student’s t Distribution) for the parameters in
the linear model decrease dramatically during the for-
ward search. We describe here an alternative form of
search that provides information on the inferential
effect of the units on the estimated linear model.

If the standard regression model (1) is rewritten as

y = Xβ + ε =Qθ + wγ + ε, (2)

Q is the n× p − 1 matrix of carriers obtained by
deleting the column w from X. At the end of the
search, the t test for the column of X corresponding
to w from multiple regression on X is identically the
added variable test described immediately after equa-
tion (11) in the article on Residuals. This is found
by first regressing y and w on Q and then testing the

regression through the origin of the resulting residuals
of y on those of w.

We adapt the added variable test to the forward
search by dropping each column of X in turn to create
p − 1 vectors w. We then use regression on each Q to
provide a forward search from which w is excluded.
We monitor the behavior of the added variable test for
each w, thus obtaining p − 1 plots of t statistics from
p − 1 different forward searches: p − 1 because we
are not usually interested in testing hypotheses about
the value of the constant in the regression model.
Because we exclude w from the search, the t test for
w has the correct distribution and increases during the
search rather than decreasing. The details are in [2].

We start, in Figure 3, with a forward plot of the
added variable t test for regression of untransformed
mandible length on gestational age. The plot shows
a steady upward trend to a very significant value
of 35.90. There is no sign of the importance of
individual observations such as the units giving large
residuals in Figure 1; evidence for the regression is
spread throughout the data.

Figure 4, for regression of log y on a quadratic
in age is similarly well behaved. The value of t1, the
t test for regression on age, rises steadily to 18.08,
while that for t2 for the quadratic term decreases to
−12.55. The leverage points 164 to 167, which are
such a notable feature of Figure 2, do not enter at
the end of either of the added variable searches on
which the plots in Figure 4 are based. The plot shows
no evidence that these four units are responsible
for the quadratic term in the model. Despite the
appearance of Figure 2, the evidence of curvature
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Figure 3 Mandible length data, first-order model: forward
plot of added variable t test t1 for regression on age.
Evidence for the regression is spread throughout the data
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Figure 4 Mandible length data, second-order model,
logged response: forward plot of added variable t tests t1
and t2 for regression on age and its square. Evidence for
the regression is again spread throughout the data

in the relationship with a logged response is spread
throughout the data.

Our analysis thus shows that taking a logged
response combined with a quadratic model produces
residuals, which have an approximately normal dis-
tribution, with four leverage points, the residuals for
which change appreciably during the search. These
four units are not influential for the choice of terms in
the linear model. However, they might be influential
for the choice of the transformation. But the forward
plot of the test for transformation in Figure 5 of the

article on the Fan Plot shows that this is not the case.
Thus, these procedures provide no evidence for the
suggestion mentioned by Royston and Altman that
the fetuses with an age greater than 28 weeks were
different from the younger ones.

Generalized Linear Models

The structure provided by the theory of generalized
linear models allows us to apply the forward search
to, particularly, gamma, Poisson, and binomial data
in a manner analogous to that used for multiple
linear regression. Chapter 6 of Atkinson and Riani
[1] contains theory and examples.

In generalized linear models, we have a response
y, a vector of linear predictors with elements η =
xT β, and a link function g(µ) = η connecting the
two. In the article on Residuals, the deviance D, the
analogue of the residual sum of squares in regression,
was written as

D =
n∑
i=1

d2
i , (3)

where d2
i is the contribution of the ith unit to the total

deviance. The deviance residual was then defined as

rDi = di sign (yi − µ̂i). (4)
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Figure 5 Bliss’s beetle data: absolute values of deviance residuals as the subset size increases: (a) logit, (b) probit and
(c) complementary log-log links
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To extend the forward search to generalized linear
models, we replace the least-squares residuals ei
with the deviance residuals rDi . Then, as before,
when m observations are used in fitting, the optimum
subset S∗(m) yields n deviance residuals rD(m

∗).
We order the squared residuals r2

D(m
∗) and take the

observations corresponding to the m+ 1 smallest as
the new subset S∗(m+ 1).

For the regression models in the previous sections,
we looked at forward plots of residuals and of t tests
for components of the linear predictor. As well as
problems about individual outliers and the correct
form of the linear predictor, there is also a need
in generalized linear models to specify the correct
form of link function. In the articles on Goodness
of Fit and Residuals, analyses are given of Bliss’s
beetle data. These are binomial data in which the
probability of success θi at dose level xi is modeled
by the link function g(θi ) = ηi . The analysis used the
logistic link

g(θ) = log
θ

1− θ
. (5)

There was evidence that this link was not satisfactory
for these data. Alternative links are the probit

g(θ) = Φ−1(θ), (6)

where Φ is the cdf of the standard normal distribu-
tion, and the complementary log–log link

g(θ) = log{− log(1− θ)}. (7)

(see Quantal Response Models).
We explore these three possible link functions by

looking at forward plots of absolute deviance resid-
uals, which will indicate whether the unsatisfactory
nature of the logistic link was caused by a few out-
liers or whether there is a systematic lack of fit.
Figure 5 shows plots of absolute deviance residuals
from forward searches for three models in which the
explanatory variable is log(dose) and the three links
are the logit, probit and complementary log–log. The
observations are numbered from the lowest dose level
to the highest. For the logit link observations, 1 and 2
are the last two to be included in the forward search.
The crossing of the lines at the end of the plot in
the top panel of Figure 5 shows that the inclusion
of observations 1 and 2 seems noticeably to affect
the ordering of the residuals. With the probit link
units 3 and 4 (the last two to be included) seem to

be different from the rest of the data: they are badly
predicted by models in which they are not included.
However, the residuals from the forward search with
the complementary log–log link in the bottom panel
of the figure show no such behavior; all residuals
are smaller than two throughout, and relatively con-
stant. Since the scale parameter is not estimated, it
is possible to make such absolute comparisons of the
residuals across different models, even if they come
from different link families.

The conclusion from Figure 5 is that the comple-
mentary log–log link is satisfactory and that the other
two are not. This conclusion is not dependent on a
few observations, but is spread throughout the data.
To sharpen and quantify this general impression based
on forward plots of residuals, we now consider the
goodness of link test, introduced in the article on
Goodness of Fit. This provides a test for the ade-
quacy of each link from the t test for the inclusion
of the constructed variable η̂

2 in the linear predic-
tor. The constructed variable plot in Figure 8 of the
article on Goodness of Fit indicates rejection of the
logistic link when all observations are used in fitting.
We use forward plots of the test statistics to test three
links and to see whether the conclusions are based on
all observations.

Figure 6 shows a forward plot of the goodness of
link test, the order of introduction of the observations,
as in Figure 5, being different for the three links. For
the logit and probit links, these plots show evidence
of lack of fit at the 5% level, which is indicated
by the statistic going outside the bounds in the plot.
Although, it is inclusion of the last two observations
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Figure 6 Bliss’s beetle data: forward plot of the good-
ness of link test. Only the complementary log-log link is
satisfactory
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that causes the values of the statistic to become
significant, it is clear from the steady upward trend
of the plots that lack of fit is due to all observations.
The plot for the complementary log–log link shows
no evidence of any departure from this model. This
plot also shows that unit 5, which is the one with the
biggest residual for the complementary log–log link
and the last to be included in this forward search, has
no effect on the t value for the goodness of link test.

This analysis shows that, of the three links consid-
ered, only the complementary log–log link is satis-
factory. The plot of fitted values for the logistic link
in Figure 6 of the article on Residuals relates this
finding to individual observations. The fitted dose
response curve for this symmetrical link fits badly
in the center of the experimental region, whereas,
as Figure 6.36 of Atkinson and Riani [1] shows,
the asymmetric complementary log–log link provides
an appreciably better fit over the whole range of
x values.

Multivariate Data

With multivariate observations, we replace the
squared residuals used in the forward search for
regression and generalized linear models with the
squared Mahalanobis distances

d2
i (m

∗) = {yi − µ̂(m∗)}T Σ̂−1
(m∗){yi − µ̂(m∗)},

(8)

where µ̂(m∗) and Σ̂(m∗) are estimates of the mean
and covariance matrix of the observations based on
the subset S∗(m). These distances are used for order-
ing the observations and for determining how we
move forward in the search. We use the robust bivari-
ate boxplots of Zani et al. [7] to determine an initial
subset, which is not outlying in any two-dimensional
plot of the data. The content of the contours is
adjusted to give an initial subset of the required size.
Once we have some idea of the structure of the data,
we start the search with subsets that seem potentially
interesting.

As an example with some expected and some
unexpected structure, we look at readings on six
dimensions of 200 Swiss bank notes, 100 of which
may be genuine, and 100 forged. All notes have
been withdrawn from circulation and classified by

an expert, so some of the notes in either group may
have been misclassified. Also, the forged notes may
not form a homogeneous group. For example, there
may be more than one forger at work. The data, and
a reproduction of the bank note, are given by Flury
and Riedwyl [4, pp. 4–8].

Figure 7 is a forward plot of Mahalanobis dis-
tances scaled by the estimate of Σ at the end of
the search. The search starts with 20 observations
on notes believed genuine. In the first part of the
search, up to m = 93, the observations seem to fall
into two groups. One has small distances and is com-
posed of observations within or shortly to join the
subset. Above these there are some outliers and then,
higher still, a concentrated band of outliers, all of
which are behaving similarly. The plot clearly shows
the difference between the genuine notes and the forg-
eries. Toward the end of the search, there is evidence
that the group of forgeries is not homogeneous.

The structure of the group of forgeries is also
readily revealed by the forward search. Figure 8 is
a forward plot of the scaled Mahalanobis distances
just for the forgeries. In the center of the plot,
around m = 70, this shows a clear structure of a
central group, one outlier from that group and a
second group of 15 outliers. As successive units
from this cluster enter after m = 85, they become
less remote and the distances decrease. By the end
of the search there is appreciable masking, so that
the group of 15 observations is no longer clear from
the plot of the Mahalanobis distances. Under such
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Figure 7 Swiss Banknote Data, all 200 observations:
forward plot of scaled Mahalanobis distances starting with
20 notes believed to be genuine. The two groups are clear,
but a third group seems to appear toward the end of the
search
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Figure 8 Swiss Banknote Data, 100 notes classified as
forgeries: forward plot of scaled Mahalanobis distances.
Toward the end of the search, there seems to be a group of
15 observations and a further single outlier
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Figure 9 Swiss Banknote Data: scatterplot of y6 against
y4. The “genuine” notes are marked with crosses; the
labeled units are the last 15 to enter the search

conditions, the deletion methods described in the
article on Diagnostics are likely to fail to reveal the
structure.

In this example, the forward search clearly indi-
cates not only the presence of two groups of notes, but

also an unexpected subset of 15 observations, show-
ing that the group of forgeries is not homogeneous but
consists of two subgroups. Once attention has been
drawn to the existence of this structure, it is possi-
ble to find it in the data. Figure 9 is one of the 15
different panels of the scatterplot matrix for these six
dimensional data and by far the most revealing. The
last 15 observations to enter the subset are numbered:
the other forgeries are shown by filled circles and the
“genuine” notes by crosses. It seems that one genuine
note has been misclassified.

The entries in this article show various ways in
which the forward search can elucidate the structure
of data and, in the case of the third example, reveal
unexpected subsets. A fuller analysis of the data
on Swiss banknotes, together with numerous other
applications of the forward search to multivariate
data, are described in [3].
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