
Fan Plot

Introduction

The fan plot is a graphical procedure for determining
the effect of one or more observations on the trans-
formation parameter λ in the Box and Cox family of
power transformations of the response in regression.
Such transformations, for example, from y to log y,
are often important for ensuring that the assumptions
behind least squares are satisfied and that therefore,
efficient use is made of data (see Power Transfor-
mations). The fan plot is based on a forward search
through the data to fit subsets of increasing num-
bers of observations, with any outliers being included
toward the end of the search. The plot monitors the
behavior of the approximate score test for five differ-
ent transformations and reveals whether the evidence
for a transformation depends on a few observations
or is, preferably, spread throughout the data.

Interest is in transformation of the response y in
the multiple regression model

y = Xβ + ε, (1)

y is the n× 1 vector of responses, β is the p × 1 vec-
tor of parameters and it is assumed that the additive
errors of observation ε are independently distributed
with constant variance σ 2. Also in (1) X is the n× p

matrix of carriers, that is, of explanatory variables
and perhaps functions of them, such as quadratics and
interaction terms. To obtain the approximate score
test we add a “constructed variable” (see Residuals)
to the regression model and obtain the augmented
model

y = Xβ + wγ + ε, (2)

where w is n× 1 and γ is a scalar parameter. The
approximate score test is the Student t-test tγ for
testing that γ in (2) equals zero. The constructed
variable for the transformation is derived in the next
section. Testing that γ = 0 is testing that there is no
evidence for any transformation of the response.

A Score Test for Transformations

The analysis of the data on mandible length in the
article on residuals shows appreciable evidence not

only of the normality of the residuals (see Nor-
mality, Tests of, Figure 3) but also of increasing
variance with fitted value, Figure 1. Often, normal-
ity and constant variance can be achieved by fitting
the regression model not to y but to a function of y;
Figure 1 of the article on diagnostics shows the bene-
ficial effect of the transformation to log(y) combined
with quadratic regression (see Polynomial Regres-
sion) on the residuals from the mandible length data.
The appropriate transformation frequently, but, as
will be seen later, not always, also leads to a simple
linear model, without quadratic or interaction terms.

The logarithmic transformation is one special case
of the normalized power transformation [4]

z(λ) =

yλ − 1

λẏλ−1
λ �= 0

ẏ log y λ = 0,
(3)

where the geometric mean of the observations is
written as ẏ = exp(Σ log yi/n). For inference about
the transformation parameter λ, Box and Cox sug-
gest likelihood ratio tests. A computationally sim-
pler alternative test is the approximate score statistic
(see Likelihood) derived by Taylor series expansion
of (3) as

z(λ)
.= z(λ0)+ (λ− λ0)

∂z(λ)

∂λ

∣∣∣∣
λ=λ0

= z(λ0)+ (λ− λ0)w(λ0). (4)

In (4), w(λ0) is the “constructed variable” for the
transformation and can be treated as is the extra-
explanatory variable in (2). To test the transformation
λ = λ0 the response y is transformed to z(λ0) in (3).
The approximate score statistic, Tp(λ0), is then the t

statistic tγ for regression of the transformed response
on w(λ0) in (2). Details of the constructed variables
are in the article on residuals.

The Fan Plot

In the forward search, the p parameters of the
regression model (1) are estimated by least squares
applied to a carefully chosen subset of m observa-
tions. We start the search with m small, usually p or
perhaps p + 1, and randomly select 1000 subsamples.
The initial subset provides the least median of squares
estimator, that is it minimizes the median squared
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Figure 1 Poisson data: fan plot–forward plot of Tp(λ) for five values of λ. The curve for λ = −1 is uppermost: both
λ = −1 and λ = −0.5 are acceptable. There is no evidence of any outliers or influential observations

residual [5]. We then order the residuals and augment
the subset.

When m observations are used in fitting, the opti-
mum subset yields n residuals e(m∗). We order the
squared residuals e2(m∗) and take the observations
corresponding to the m+ 1 smallest as the new sub-
set. Usually, this process augments the subset by
one observation, but sometimes two or more obser-
vations enter as one or more leave. Owing to the
form of the search, outliers, if any, tend to enter as
m approaches n.

We combine calculation of the test statistic Tp(λ0)

with the forward search. Since observations that are
outlying on one scale may not be outlying for a differ-
ent transformation, we conduct several searches for
different values of λ0. In most applications, including
the examples here, we use five searches for the val-
ues λ = −1, −0.5, 0, 0.5, and 1. If there are outliers
for a particular λ, they will enter the search last and
influence the value of the test statistic.

As a first example, we use the Poisson Data from
Box and Cox [4], partly analyzed in the article on
residuals. These data are well behaved: there are
no outliers or influential observations that cannot be
reconciled with the greater part of the data by a suit-
able transformation. Our fan plot clearly indicates the
reciprocal transformation. We then consider a series
of modifications of the data in which an increasing
number of outliers is introduced. The fan plot reveals
the structure in all instances.

The data are the times to death of animals in a
3× 4 factorial experiment with four observations

at each factor combination. All our analyses use an
additive model, that is, without interactions, so that
p = 6, the model used by Box and Cox when finding
the reciprocal transformation. The implication is that
the model should be additive in death rate, not in time
to death.

The fan plot of the values of the approximate
score statistic Tp(λ) for the five searches as the sub-
set size m increases is given in Figure 1 and shows
that the reciprocal transformation is acceptable as is
the inverse square root transformation (λ = −0.5).
The horizontal lines are at ±2.58, corresponding to
1% significance, assuming the statistics have a stan-
dard normal distribution. The results of Atkinson
and Riani [3] show that this is a good working
approximation.

Initially, for small subset sizes, there is no evi-
dence against any transformation. During the whole
forward search, there is never any evidence against
either λ = −1 or λ = −0.5 (for all the data λ̂ =
−0.75). The log transformation is also acceptable
until the last four observations are included by the
forward search. These are some of the largest obser-
vations, which will be informative about the need
to transform. Evidence that some transformation is
needed is spread throughout the data, less than half
of the observations being sufficient to reject the
hypothesis that λ = 1. There are no jumps in this
curve, just an increase in evidence against λ = 1 as
each observation is introduced into the subset. The
relative smoothness of the curves reflects the lack
of outliers and exceptionally influential cases and
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the general shape of the plot justifies the name of
“fan plot”.

For the introduction of a single outlier into the
Poisson data, we follow Andrews [1] and change
observation 8, one of the readings for Poison II,
group A, from 0.23 to 0.13. This is not one of the
larger observations, so the change does not create
an outlier in the scale of the original data. The
effect on the estimated transformation of all the
data is, however, to replace the reciprocal with the
logarithmic transformation: λ̂ = −0.15. And, indeed,
the fan plot of the score statistics from the forward
searches in Figure 2 shows that, at the end of the
forward search, the final acceptable value of λ is 0,
with −0.5 on the boundary of the acceptance region.

Figure 2 clearly reveals the altered observation
and the differing effect it has on the five searches.
Initially, the curves are the same as those of Figure 1.
But for λ = 1, there is a jump due to the introduction
of the outlier when m = 41, which provides evidence
for higher values of λ. For other values of λ, the
outlier is included further on in the search. When
λ = 0.5, the outlier comes in at m = 46, giving a
jump to the score statistic in favor of this value of
λ. For the other values of λ, the outlier is the last
value to be included. Inclusion of the outlier has
the largest effect on the inverse transformation. It
is clear from the figure how this one observation is
causing an appreciable change in the evidence for a
transformation.

We now further modify the Poisson data; in addi-
tion to the previous modification, we also change
observation 38 (Poison I, group D) from 0.71 to 0.14.

This creates an example of masking, in which one
outlier hides the effect of another, so that neither
is evident when using the methods for the dele-
tion of single observations described in the article
on diagnostics.

The effect of the two outliers is clearly seen in the
fan plot, Figure 3. Here, only λ = 0 is acceptable at
the end of the search. The plot also reveals the dif-
fering effect the two altered observations have on the
five searches. Initially, the curves are again similar to
those of the original data shown in Figure 1. The dif-
ference is greatest for λ = −1 where addition of the
two outliers at the end of the search causes the statis-
tic to jump from an acceptable 1.08 to 10.11. The
effect is similar, although smaller, for λ = −0.5. It is
most interesting, however, for the log transformation.
Toward the end of the search this statistic is trending
downwards, below the acceptable region. But addi-
tion of the last two observations causes a jump in the
value of the statistic to a nonsignificant value. The
incorrect log transformation is now acceptable.

For these three values of λ, the outliers are the last
two observations to be included in the search. They
were created by introducing values that are too near
zero when compared with the model fitted to the rest
of the data. For the log transformation, and more so
for the reciprocal, such values become extreme and
so have an appreciable effect on the fitted model. For
the other two values of λ, the outliers are included
earlier in the search. The effect is most clearly seen
when λ = 1; the outliers come in at m = 40 and 46,
giving upward jumps to the score statistic in favor of
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Figure 2 Modified Poisson data: fan plot–forward plot of Tp(λ) for five values of λ. The curve for λ = −1 is uppermost:
the effect of the outlier is evident in making λ = 0 appear acceptable at the end of the search
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Figure 3 Doubly modified Poisson data: fan plot–forward plot of Tp(λ) for five values of λ. The curve for λ = −1 is
uppermost; the effect of the two outliers is clear
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Figure 4 Mandible length data: fan plot–forward plot of Tp(λ) for the five transformations of the data when the regression
is on age

this value of λ. For the remaining value of 0.5, one
of the outliers is the last value to be included.

These three plots exhibit the main features of
the fan plot. Further analyses of the examples and
comparison with other procedures are in Atkinson
and Riani [2, Sections 4.4 and 4.7]. One conclusion
is that alternative diagnostic procedures, such as the
constructed variable plot in Figure 5 of residuals, can
fail in the presence of masking and multiple outliers.

Mandible Length Data

The preceding examples calibrate the properties of
the fan plot. We now use it to analyze transformations
of the mandible length data.

The plot of the residuals of the untransformed
data after regression on gestational age, for example,
Figure 3 of residuals, showed three negative outliers
as well as many smaller residuals lying outside the
simulation envelope. In contrast, the residuals after
regression of log y on a quadratic in age, Figure 1
of diagnostics, are much more nearly normal. Is the
evidence for this transformation largely dependent on
the outlying observations? How is it affected by the
linear model?

We start with just simple regression. Figure 4
is a fan plot for the five transformations of the
data when the regression is on age. There is no
evidence for a transformation – all values except
λ = 1 are rejected by the end of the search. The
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Figure 5 Mandible length data: fan plot–forward plot of Tp(λ) for the regression of log y on a quadratic in age

statistic for this value remains within the bounds of
±2.58 throughout the search. Although the values are
toward the lower boundary at the end of the search,
there is no obvious evidence of the effect of the three
outlying observations, of the kind seen in Figure 3.
Such jumps in the curve of the statistic are most in
evidence for the reciprocal transformation λ = −1,
where the observations giving negative residuals on
the untransformed scale are even more extreme after
transformation.

Although there is no evidence for transformation
when regression is on age, we know from Table 1 of
diagnostics that the quadratic term in this regression
is significant. The final plot, Figure 5, is therefore the
fan plot for the regression of log y on a quadratic in
age. It shows that, for this more complicated model
with an extra term, the log transformation is the
only one that is acceptable. Although the last three
observations to enter the search increase the value of
the statistic, it does not change dramatically. There
are no jumps in the other curves of the kind visible
for λ = −1 in Figure 4.

The general conclusion is that the logarithmic
transformation with a quadratic model is to be pre-
ferred to simple regression and no transformation. As
the forward plots of t statistics for regression coef-
ficients in Figure 4 of the article on the forward
search show, this conclusion is supported by all the
data and is in agreement with the Q–Q plots of resid-
uals mentioned above. An interesting feature of the
analysis is that transformation has strengthened the
evidence for a more complicated regression model.
Often transformations result in a simpler model, but

here there is a conflict between the linearity of the
plot of y against x and the increasing variance with
y evident in Figure 2 of the article on Goodness of
Fit. This conflict was a reason for the fractional poly-
nomial models used by Royston and Altman [6]. An
alternative analysis is to keep the simple linear model,
but to transform both sides of the model to obtain
errors with constant variance (see Power Transfor-
mations). The forward search for this transformation
is illustrated in [2, Section 4.12].
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(See also Model Checking; Model, Choice of)
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