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SUMMARY

Outliers can have a large in¯uence on the model ®tted to data. The models we consider are the trans-
formation of data to approximate normality and also discriminant analysis, perhaps on transformed
observations. If there are only one or a few outliers, they may often be detected by the deletion methods
associated with regression diagnostics. These can be thought of as `backwards' methods, as they start from
a model ®tted to all the data. However such methods become cumbersome, and may fail, in the presence of
multiple outliers. We instead consider a `forward' procedure in which very robust methods, such as least
median of squares, are used to select a small, outlier free, subset of the data. This subset is increased in size
using a search which avoids the inclusion of outliers. During the forward search we monitor quantities of
interest, such as score statistics for transformation or, in discriminant analysis, misclassi®cation prob-
abilities. Examples demonstrate how the method very clearly reveals structure in the data and ®nds
in¯uential observations, which appear towards the end of the search. In our examples these in¯uen-
tial observations can readily be related to patterns in the original data, perhaps after transformation.
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1. INTRODUCTION

Multiple outliers can strongly a�ect the model ®tted to data, as may unidenti®ed distinct subsets.
But such important observations may be hard to identify, even with deletion techniques such as
those of regression diagnostics. The major di�culty, often called masking, arises because the
deletion of several observations may be necessary before there is an appreciable change in the
®tted model or in the pattern of residuals. These diagnostic techniques may be thought of as
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`backwards' methods: they start from a ®t to all the data and then study the e�ects of deletion.
Instead we consider a `forward' search through the data. As we show, this forward search clearly
displays any outlying or in¯uential observations in a way which can easily be linked to simple
plots of the data.

Bivariate boxplots and methods related to robust techniques are used to identify a small outlier
free subset of the observations which agrees with the model being ®tted. The subset then grows by
the sequential selection of observations closest to the model, for example those with the smallest
residuals from the ®tted subset. During the growth of the subset we monitor quantities of interest:
for transformations we look at score statistics for the Box±Cox family and for discriminant
analysis at misclassi®cation probabilities. The graphs of such quantities lead to the identi®cation
of interesting observations, which nearly always occur in the last steps of the search. For trans-
formations, which observations are in¯uential will depend on whether we search on transformed
or untransformed data.

Two bivariate boxplots are described in Section 2. In Section 3 the bivariate boxplots are
superimposed on scatterplot matrices, providing information about potential outliers. For one of
the boxplots, the shape of the robust contours of the bivariate distribution indicates whether the
data should be transformed. The next section uses the Box±Cox family for univariate and multi-
variate transformations to normality. For univariate data the initial subset is found using the
least median of squares criterion and the forward search is on ordered residuals. For multivariate
transformations we use the contours of the bivariate boxplots to de®ne the initial subset and
search on orderedMahalanobis distances. In the last section we apply our multivariate method to
discriminant analysis.

The emphasis is on the analysis of data using many plots. The examples show how features of
plots from the forward search can be informatively related to structure in the scatterplot matrices
of the data. The paper demonstrates how the forward search enables us to get inside the data in a
way which conventional deletion methods do not.

2. BIVARIATE BOXPLOTS

The univariate boxplot (Tukey 1977, p. 40) is a well-established technique for summarizing the
distribution of a single random variable. A major advantage is that it is available in many
statistical packages. In this section we describe two bivariate extensions of the boxplot. These not
only provide informative summaries of the data but can be used to provide starting points for
forward searches through the data.

If the data have a bivariate normal distribution the contours of the joint density will be
elliptical. If the contours of the empirical distribution are far from elliptical this will indicate
systematic departures from normality. Normality, and so elliptical contours, may often be
achieved by the deletion of outliers and by transformation of the data. We give an example in
Section 4 and show the e�ect on bivariate boxplots.

We ®rst need a rough ordering of the observations from those most outlying to those closest to
a bivariate normal distribution. Ruts and Rousseeuw (1996) describe a method which considers
observations individually. But, for the construction of the boxplot, it is su�cient to consider the
observations in groups.

The computationally more intensive of the two versions of the bivariate boxplot
(Zani et al. 1997) uses peeling of convex hulls to establish the shape of the central part of the
data. Successive convex hulls are peeled until the ®rst one is obtained which includes less than
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50 per cent of the data (and so asymptotically half the data as the sample size increases). The
convex hull so found (which we call the 50 per cent hull) is smoothed using a B-spline, con-
structed from cubic polynomial pieces, which uses the vertices of the 50 per cent hull to provide
information about the location of the knots. (Eilers and Marx 1996 give computational details
for construction of the B-spline curve.)

Zani et al. (1997) discuss several choices of a robust bivariate median. In this paper we ®nd the
robust centre as the arithmetic mean of those observations lying within the 50 per cent contour.
In this way we can exploit both the e�ciency properties of the arithmetic mean and the natural
trimming o�ered by the hulls. Other contours, to discriminate between central observations and
outliers, are found by linear scaling of the distance of the smoothed 50 per cent contour from the
centre. The calculations depend solely on the percentage points of the w22 distribution: for a 90 per
cent contour the outer contour should be 1.82 times as far from the centre as the smoothed
contour. Simulation results for small sample sizes indicate that such regions are slightly too
small, as the B-spline lies within the convex hull which may anyway contain slightly less than half
the data. The exact value of the scaling coe�cient is not important if the contours are to be used
solely to provide a starting point for the forward search.

As an examplewe take the 57 readings on ®ve properties of soil samples given in Table I (Mulira
1992). The ®rst two variables are measurements of pH, which are highly correlated. The other
three are measures of available phosphorus, potassium and magnesium. The data are appreciably
rounded. To avoid numerical problems with the S-Plus peeling algorithm, the datawere jittered by
adding small normal errors. Figure 1 is a plot of just two variables, concentration of potassium,
K and concentration of phosphorus P. There is one very clear outlier, observation 20, and a
tendency for the data to be concentrated in the lower left corner of the plot: observations 33,

Figure 1. Untransformed soil data. Scatterplot of phosphorus concentration y3 and potassium concentration y4 with
robust contours
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Table I. Soil data: pH and available nutrients in 57 soil samples from ®elds in England and Wales

Observation y1 y2 y3 y4 y5
pH1 pH2 P K Mg

1 6.3 5.8 31 88 130
2 6.6 6.0 40 68 76
3 6.6 6.0 32 93 79
4 6.3 5.8 40 128 106
5 6.6 5.9 22 77 61
6 6.9 6.3 11 77 45
7 5.8 5.1 22 175 91
8 5.5 5.0 12 221 106
9 6.2 5.7 17 77 103
10 6.2 5.6 18 114 225
11 6.6 6.1 14 86 275
12 6.5 6.1 30 270 245
13 7.0 6.5 18 72 180
14 5.8 5.1 5 136 118
15 6.5 5.7 17 86 193
16 6.3 5.7 16 134 158
17 8.0 7.4 21 134 109
18 7.0 6.3 18 77 61
19 8.3 7.7 13 102 70
20 8.0 7.5 117 61 70
21 5.8 5.1 13 102 165
22 6.8 6.0 5 69 214
23 7.2 6.4 28 82 176
24 6.8 6.0 3 56 138
25 6.2 5.6 10 82 275
26 6.6 6.0 10 197 325
27 6.6 6.0 12 100 308
28 5.6 4.9 14 88 224
29 6.5 5.8 23 76 138
30 6.0 5.5 16 187 96
31 5.9 5.3 22 80 68
32 5.8 5.3 23 78 79
33 7.6 7.0 50 315 370
34 7.1 6.5 16 177 686
35 6.5 6.0 42 207 358
36 7.0 6.4 29 147 348
37 6.2 5.6 8 74 150
38 6.2 5.5 33 315 148
39 6.3 5.6 17 102 125
40 5.5 4.8 17 105 180
41 5.6 5.0 14 171 144
42 5.9 5.3 22 270 239
43 5.8 5.2 15 74 330
44 6.3 5.9 31 350 574
45 6.8 6.2 19 136 353
46 7.2 6.7 21 147 506
47 6.9 6.3 18 225 551
48 6.2 5.9 27 142 89
49 5.5 5.0 14 112 110
50 5.5 5.0 14 112 110
51 6.3 5.7 16 84 77
52 5.8 5.1 14 81 91
53 6.9 6.2 11 76 73
54 6.6 6.1 32 128 46
55 7.5 6.8 70 481 88
56 7.1 6.4 57 334 68
57 6.2 5.6 13 74 62
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55 and 56 also lie away from the main body of data. The resulting boxplot contours are not
elliptical and call attention to the skewed distribution of values, which can perhaps be reduced by
transformation.

A computationally less intensive form of boxplot can be found by ®tting one or more ellipses
to the data, using robust estimates of the parameters. Goldberg and Iglewicz (1992) describe two
methods. The more complicated requires ®tting quadrants of four di�erent ellipses. We exemplify
the simpler form, called the `Relplot', in which the marginal medians, as opposed to means, of
the observations are used as locational estimates. The required covariance matrix of the observa-
tions is then estimated by sums of squares and products about these medians. The central
50 per cent of the observations is de®ned by the ellipse passing through the median Mahalanobis
distance and the F distribution on 2 and n ± 2 degrees of freedom is used to scale up the outer
contours, which are now elliptical.

Figure 2 reproduces the data of Figure 1 but now with elliptical contours. In the plot the
variables have been scaled by division by their marginal standard deviations about the medians.
The contours are now not informative about the form of any systematic departure of the plot
from normality. However the tentative outliers are still clearly displayed. More importantly for
our application, even though the estimate of the covariance matrix is not robust, the data within
the 50 per cent contour clearly contain no outliers.

3. SCATTERPLOT MATRICES

The scatterplot matrix is a very useful tool for obtaining a preliminary impression of the structure
of data. It is probably most helpful when, as here, regression structure is absent. Cook
and Weisberg (1994, p. 85) show how scatterplot matrices may be di�cult to interpret if there are

Figure 2. Untransformed soil data. Scatterplot of phosphorus concentration y3 and potassium concentration y4 with
elliptical contour
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non-linear relationships between regression variables. In this section we illustrate the properties
of scatterplot matrices formed from the bivariate boxplots of Section 2.

Figure 3 shows the matrix of bivariate boxplots for the data of Table I with the outer contour at
90 per cent. For legibility on the printed page only the ®rst four variables are plotted. On the
computer screen the use of brushing makes it possible to interpret plots with more variables.What
is most noticeable in the ®gure is the shape of the various contours. If all were elliptical the data
could be treated as having amultivariate normal distribution, and this does seem to be the case for
the two pHmeasurements. But the variety of shapes for the other plots suggests that we should try
transforming K and P and that di�erent transformations may be needed for the two variables.

The plots with elliptical contours are shown in Figure 4. In this scatterplot matrix the uni-
variate boxplots for each variable are on the diagonal of the matrix. These indicate one outlier for
pH2 and skewed distributions for K and P. The bivariate plots show patterns of outliers in
the upper right hand corners which may be reconciled with the data through transformation,
although observation 20 seems outlying in several plots.

4. TRANSFORMATIONS

4.1 Univariate transformation

We consider ®rst the transformation of just one of the variables in the soil data, using the
concentration of phosphorus, y3, which nicely illustrates several points. We use the Box and Cox

Figure 3. Untransformed soil data. Scatterplot matrix of ®rst four variables: the non-elliptical robust contours suggest
the data should be transformed
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(1964) parametric family of power transformations, written in normalized form as

z�l� � � yl ÿ 1�=�l_ylÿ1� l 6� 0
_y log y l � 0

�
; �1�

where _y � exp�Slog yi=n� is the geometric mean of the observations. For a regression model with
residual sum of squares of the z�l� equal to R�l�, the pro®le log-likelihood of the observations,
maximized over b and s2, is

Lmax�l� � const ÿ �n=2�logfR�l�=ng �2�

so that l̂ minimises R�l�.
For inference about the transformation parameter l, Box and Cox use likelihood ratio tests

derived from (2), that is the statistic

TLR � 2fLmax�l̂� ÿ Lmax�l0�g � n�logfR�l0�=R�l̂�g�: �3�

A disadvantage of this likelihood ratio test is that numerical maximization is required to ®nd
the value of l̂. A computationally simpler alternative is the approximate score statistic Tp�l�
(Atkinson 1985, Chapter 6) which is the t test for regression on the constructed variable @z�l�=@l,
derived from Taylor series expansion of (1). We exemplify the use of both tests.

4.2 The forward search

These tests for transformation are aggregate statistics, based on all the data. To ®nd the e�ect of
single observations on the statistics, deletion methods can be used, which yield the e�ect of each

Figure 4. Untransformed soil data. Scatterplot matrix of ®rst four variables, showing potential outliers
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observation in turn, given that the other n±1 observations are still used for ®tting. However, if
there are several interesting observations their e�ects may not be detected by only deleting one
observation at a time, a condition known as masking. To avoid this problem we instead look at
the e�ect of adding observations. We start with a small subset and allow it to grow in size by
selecting observations closest to the assumed model. For each subset size we calculate the statistic
of interest: for transformations this is one of the tests given above. For the discriminant analysis
of the next section, the evolution of misclassi®cation probabilities is of interest.
To get inside the data in this way we order the observations from those nearest to the normal

theory model to those furthest from it. Our methods are described in detail in Riani and
Atkinson (1998).

The ordering is in two stages. First we need to ®nd a subset of the data which is free of outliers.
We then conduct a forward search (Hadi 1992; Atkinson 1994) based on residuals for univariate
data or on Mahalanobis distances for multivariate data. The comparison of subsets uses
measures from very robust analyses. For regression this is least median of squares (LMS).

For the linear regression model E�Y� � Xb, with X of rank p, let b be any estimate of b. With n
observations the residuals from this estimate are ei�b� � yi ÿ xTi b �i � 1, . . . , n). The LMS
estimate ~bminimizes the median value of e2i �b�. Rousseeuw (1984) ®nds an approximation to ~b by
searching only over elemental sets, that is subsets of p observations, taken at random. Depending
on the dimension of the problem we ®nd the starting point for the forward search either by
sampling 1000 subsets or by exhaustively evaluating all subsets.

We require a subset which is outlier free. The best subset is that which gives the smallest value
of the LMS criterion. For a particular subsetM of size m let the least squares estimate of b be
b̂�M� and let the median, allowing for estimation, be

med � ��n � p � 1�=2�; �4�

the integer part of (n � p � 1)/2. The LMS criterion for b̂�M� requires ordering the residuals to
obtain the variance estimate

~s2�M� � e
2
�med�fb̂�M�g; �5�

where e2�k� is the kth ordered squared residual. We take as our initial subset that for which ~s2�M�
is a minimum, so obtaining an outlier free start for our forward search.

The forward search for regression moves from ®tting m observations to m � 1 by choosing the
m � 1 observations with the smallest least squares residuals, with b estimated from the subset of
sizem. The observations are chosen by ordering all n residuals. Because n distances are calculated
and ordered for each move from m to m � 1, observations can leave the subset used for ®tting as
well as joining it as m increases. Forward searches allowing for the variances of the residuals are
used by Hadi and Simono� (1993) and by Atkinson (1994). Our comparisons show that although
the choice of residual has a slight e�ect on the forward search, it has no substantial e�ect on the
plots and inferences derived from the search. In most moves from m to m � 1 observations, one
new observation joins the subset. However there are times when one leaves as two join. This
usually happens when we include one observation which belongs to a cluster of outliers. As our
examples show, it is the last third or so of the search that contains the information about trans-
formations. The ordering of this part of the data does not seem to be sensitive to the particular
search strategy employed.
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The resulting analysis for the transformation of y3 is summarized in Figure 5. The test statistic
Tp�l� was calculated for ®ve values of l �ÿ1; ÿ0�5; 0; 0�5 and 1). For each of the ®ve values the
data were appropriately transformed and a search was made for the basic subset giving the
smallest median squared residual. (Since there is no regression in this example, p � 1 and there
are only 57 basic subsets corresponding to trying each observation in turn as the estimate of
location.) Forward searches were then performed on the transformed data, giving the ®ve curves
of Figure 5. The plot shows that the log transformation l � 0 is acceptable, but that for other
values of l the last few observations to be included in the search cause rejection of the other
transformations: the horizontal lines in the plot correspond to the 99 per cent points of the
standard normal distribution. These boundaries give a rather too strong impression of the
signi®cance of the test as the variance of the approximate score test tends to be larger than one.
Some simulation results on the comparison of several tests for transformations are given by
Atkinson and Lawrance (1989).

As in all forward searches we have analysed, there is a strong link between the forward search
and the data. For l � 1, the untransformed data, the last four observations to enter, working
backwards, are 20, 55, 56 and 33. These, the four largest observations, are labelled in the bivariate
boxplots of Figures 1 and 2. Three of them are also shown in the univariate boxplot on the
diagonal of Figure 4. For l � 0 the boxplot, not reproduced here, exhibits a symmetrical and
normal-seeming distribution. For further transformation, such as the reciprocal, the smallest
observations are overtransformed and become the outliers.

4.3 Multivariate transformation

The forward search procedure for multivariate transformation described by Riani and Atkinson
(1998) is similar. Let yij be the ith observation on the jth response out of v. In the extension of the
Box and Cox (1964) family to multivariate responses the normalized transformation of yij is

zij�lj� � � y
lj
ij ÿ 1�=�lj _y

ljÿ1
j � l 6� 0

� _yj log yij l � 0;
�6�

Figure 5. Soil data. Score statistic for power transformation Tp�l0) for y3 as the subset size m increases. The parameter
values are: l � 1 (Ð -Ð-), l � 0�5 (ÐÐÐ), l � 0 (± ± ± ±), l � ÿ0�5 (- - - - -), l � ÿ1 (� � � � � �). The log transformation

is acceptable
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where _yj is the geometric mean of the jth response. The value lj � 1 (j � 1, . . . , v) corresponds
to no transformation of any of the responses. If the transformed observations are normally
distributed with mean mi for the ith observation and covariance matrix S, twice the pro®le log-
likelihood of the observations is given by

2Lmax�l� � const ÿ n logjŜ�l�j ÿ
Xn
i�1
fzi�l� ÿ m̂i�l�gTŜÿ1�l�fzi�l� ÿ m̂i�l�g

� const ÿ n logjŜ�l�j ÿ
Xn
i�1

ei�l�TŜÿ1�l�ei�l�:
�7�

In (7) m̂i�l� and Ŝ�l� are derived from least squares estimates for ®xed l and ei�l� is the
v� 1 vector of residuals.

The calculations of m̂i�l� and Ŝ�l� is simpli®ed when, as in this paper, the n� p matrix of
explanatory variables X is the same for all responses. As a result, the least squares estimates are
found by independent regressions for each response, yielding the p� v matrix of parameter
estimates b̂�l� � �XTX�ÿ1XTz�l�. Then, in the usual way,

�n ÿ p�Ŝ�l� �
Xn
i�1

ei�l�ei�l�T

� fz�l� ÿ X b̂�l�gTfz�l� ÿ X b̂�l�g:
�8�

When these estimates are substituted in (7), the pro®le log-likelihood reduces to

2Lmax�l� � const
0 ÿ n logjŜ�l�j: �9�

So, to test the hypothesis l � l0, the statistic

TLR � n logfjŜ�l0�j=jŜ�l̂�jg �10�
is compared with the w2 distribution on v degrees of freedom, the generalization of the univariate
statistic (3).

In (10) l̂ is the vector of v parameter estimates maximizing (7), which is found by numerical
search. As in Section 2, constructed variables can be used to de®ne diagnostic tests which avoid
numerical maximization of the likelihood. However, owing to the presence of the constructed
variables, the explanatory variables are no longer the same for all responses and the covariance S
between the v responses has to be allowed for in estimation: independent least squares is replaced
by generalized least squares. The special structure, that of seemingly unrelated regression (Zellner
1962), is used by Atkinson (1995) to obtain deletion diagnostics for multivariate transformations.
We do not explore these methods here, simplicity being lost when straightforward regression can
no longer be used.

To use the forward search to order the observations we make the appropriate multivariate
transformation for the hypothesis to be tested and then use the Mahalanobis distance in place of
the squared residuals used for the univariate transformation. Suppose that a subset M of m
observations is used to estimate the regression (if any) and covariances. Let the estimates be m̂�M�
and Ŝ�M�, yielding the set of squared Mahalanobis distances

d
2
i �M� � fyi ÿ m̂i�M�gTŜÿ1�M�fyi ÿ m̂i�M�g; �11�
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for i � 1, . . . , n. Ordering these distances and then taking the observations with the m � 1
smallest distances takes the forward search from m to m � 1. To start the forward search the
initial subset of outlier free observations is found as the intersection of the observations lying
within a suitably chosen elliptical contour on all panels of the scatterplot matrix similar to
Figure 4, but including all ®ve variables. The factor for scaling the contour is chosen to give an
initial subset of suitable size. If the subset is too small, there tend initially to be seemingly random
¯uctuations in the quantities being monitored until the forward search has established a subset in
agreement with the model. If the subset is too large, outliers may be masked and, having been
included, will never be excluded.

The exploratory analyses of the soil data described by Riani and Atkinson (1998) indicate
values of the individual parameters for con®rmatory checking. There is no indication of the need
to transform y1 and y2. Since these are measurements of pH, and so are already logged hydrogen
ion concentrations, any further transformation would seem unlikely. However Richardson and
Green (1997), following earlier log-normal analyses, use the logarithmic transformation in the
analysis of data on the pH of lakes. Riani and Atkinson (1998) fail to ®nd any evidence for this
further transformation for these data. They do ®nd that the log transformation is needed for y3
(as was indicated by the univariate analysis) and y5, but that the reciprocal is needed for y4. This
is surprising as the last three responses are all measurements of amounts of chemical elements in
the soil.

To see whether these conclusions are a�ected by particular groups of observations we check
the individual transformation of each response using the multivariate statistic, which is on one
degree of freedom since the values of four out of the ®ve parameters are held at speci®ed values.
For each search we use the four relevant values from the vector l � �1; 1; 0; ÿ1; 0�, checking the
value of the transformation by use of the likelihood ratio for ®ve values of each parameter. The
plots of the 25 forward searches are given in Figure 6, where there is a panel for each variable.
Within each panel we give a plot of the signed square root of the likelihood ratio statistic for the
®ve values of l. Use of the signed square root gives plots similar to that of Figure 5 which
cogently illustrate whether lower or higher values of l are preferred. The value of 1 is acceptable
for l1 and l2 and, as the smoothness of the curves indicates, does not depend on any particular
observations. This is very di�erent from variable 3, for which the log transformation is the only
possibility. The last stage of the forward search is the addition of either observation 24 or 20,
which respectively cause rejection of l � ÿ0�5 and l � 0�5, the values on either side of zero. For
variable 5 either ÿ0�5 or 0 are possible values. Finally, for variable 4, either ÿ1 or ÿ0�5 are
possible. These plots clearly show that we cannot ®nd a common transformation for y3, y4 and y5
form greater than 53. The four observations to be deleted to achieve this are 19, 20, 24 and 55, the
last four to be added, in various orders, in all searches leading to acceptable transformations. The
source of these observations should thus be checked for anomalies and transcription errors.
Whether or not they are deleted, l � 1 is acceptable for y1 and y2.

A last comment on Figure 6 is that the values of the likelihood ratio statistics for
transformation of y3 are less extreme than those for the approximate score statistic in Figure 5.
This is in line with the comparison of statistics by Atkinson and Lawrance (1989) mentioned
above.

To conclude this analysis we return to the bivariate boxplots, but now for the transformed
data. Figure 7 is a plot of 1=y4 against log y3. Comparison with Figure 1 shows how the joint
transformation has achieved nearly elliptical contours and how observations 20 and 55, which
seemed to be outlying on the original scale, seem much less so on the transformed scale.
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Figure 8 is the scatterplot matrix for the ®rst four variables after transformation. Comparison
of these contours with those of Figure 3 shows how much more elliptical they have become as a
result of the transformations and so much closer to the multivariate normal model.

5. DISCRIMINANT ANALYSIS

5.1 An example

As a ®nal demonstration of the power of the forward search for revealing the structure of data, we
turn to discriminant analysis. Analogues of regression diagnostics for two-population linear dis-
criminant analysis are derived by Fung (1995). Very robust methods are in Hawkins and
McLachlan (1997). Both papers give references to earlier work. There is however surprisingly
little graphical interpretation of diagnostic methods for discriminant analysis. We believe our
analyses demonstrate how graphics can be fruitfully combined with statistical analysis.

To ®x ideas we analyse Fisher's data on three species of iris. There are three groups of multi-
variate observations, each of 50 observations on four variables. The data are given, for example,
by Krzanowski (1988, pp. 46±47) and by Mardia et al. (1979, pp. 6±7). The data are often

Figure 6. Soil data. Signed square roots of likelihood ratio tests for the standard ®ve values for each component of l when
the other four values are the relevant members of (1; 1; 0; ÿ1; 0). The top panel is for l1. In each panel the parameter
values are: l � 1 (ÐÐÐ), l � 0�5 (± ± ± ±), l � 0 (- - - - -), l � ÿ0�5 (� � � � � �) and l � ÿ1 (ÐÐ). In all 25 searches

were required
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Figure 7. Transformed soil data. Scatterplot of log y3 and 1=y4 with robust contours, which are more elliptical than
those of Figure 1

Figure 8. Transformed soil data. Scatterplot matrix of ®rst four variables: y1, y2, log y3 and 1=y4. The robust contours
are more nearly elliptical than those of Figure 3, showing the e�ect of transformation
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analysed on the original scale (Venables and Ripley 1994, p. 307) but sometimes logs are taken
(Venables and Ripley 1994, p. 316). It is customary to use linear discriminant analysis which
assumes that the three groups have equal covariance matrices. To test this hypothesis we use the
likelihood ratio test for the equality of the matrices given on p. 140 of Mardia et al. (1979). For
the untransformed data the test has the value 712.7, whereas for the log transformed data it is
782.7. These values are to be compared with w220: clearly on both scales the hypothesis of equality
is rejected, so that quadratic discriminant analysis is indicated. We have used both linear and
quadratic analyses on the original data and on the log transformed data. The main conclusions
remain the same: that group 1 is very di�erent from the other two and that there is a slight overlap
between groups 2 and 3, the overlap being slightly greater after the logarithmic transformation.
Here we report only our linear analysis of the untransformed data.

Traditional approaches to discriminant analysis evaluate the performance of the allocation
rule through cross-validation or sample splitting. The ®rst method, reviewed by Krzanowski and
Hand (1997), consists of determining the allocation rule using the sample data minus one
observation and then using the consequent rule to classify the omitted observation. Of course this
method may su�er from the problem of masking if more than one outlier is present. In the second
approach the training set is split randomly into two portions. One portion is used for estimation
of the allocation rule itself and the other portion to assess the performance of the rule. This
method has been strongly criticized, because future allocations will be made according to a rule
based on the whole of the training set, not just on a random portion of it.

In our approach we use the forward search to monitor the evolution of the posterior prob-
abilities as observations are included in the subset. We can then both detect in¯uential observa-
tions and determine the e�ect of each unit on the posterior probabilities, so monitoring the
performance of the allocation rule. The forward search is on the Mahalanobis distances, which
are strongly linked to changes in the posterior probabilities. In order to have a better under-
standing of the relation between these two quantities we need some algebra.

Let pl denote the prior probability of an individual coming from population (group) Pl,
l � 1, . . . , g, where g is the number of populations considered. If we indicate by p� yjl� the density
of the distribution of the observations for class l, then the posterior probability of class l after
observing unit yk is

p�ljyk� �
plp� ykjl�
p� yk�

/ plp� ykjl�; k � 1; 2; . . . ; n: �12�

Following the Bayes rule, we choose the class with maximal posterior probability p�ljyk). If we
assume that Pl is a multivariate normal population with mean ml and dispersion matrix Sl, the
log of the numerator of equation (12) can be written as:

ÿ p

2
log 2p ÿ 1

2
logjSlj ÿ

1

2
� yk ÿ ml�TSÿ1l � yk ÿ ml � � log pl: �13�

Given training sets of size ml from each population Pl, the parameters ml and Sl can be estimated
by the means and the covariance matrices of these training sets: m̂l�Ml� and Ŝl�Ml �. From
equation (13) it is clear that the posterior probabilities are positively correlated with the prior
probabilities but are negatively related both to the Mahalanobis distances from the various
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populations and to the determinant of the covariance matrix. The term jŜlj is linked to the
Mahalanobis distance by the deletion relation:

jŜl�k��Ml�j � jŜl�Ml�j
ml ÿ 1

ml ÿ 2

� �p

1 ÿ ml

�ml ÿ 1�2 d
2
k�Ml�

" #
; �14�

where jŜl�k� �Ml�j is the determinant of the covariance matrix of a sample sizeml excluding unit k.
A large increase of Mahalanobis distance due to inclusion of unit k, therefore, will automatically
also produce an increase of jŜl�Ml �j, which is likely to produce a big change in the posterior
probability of unit k. Thus a forward search on the Mahalanobis distance of every observation
from its own population leads to inclusion in the last steps of the search of those units which most
a�ect the posterior probabilities. That is equations (13) and (14) show that the units which have
the largest Mahalanobis distances (potential outliers) are also those which are likely to produce
jumps in the plot of the posterior probabilities. If the covariance matrices for all groups are the
same, so that we may write Sml � m, the determinants in equation (13) become equal for all
groups. Then we have linear discriminant analysis when the posterior probabilities depend just
on the Mahalanobis distances and prior probabilities.

We now analyse some aspects of the iris data to demonstrate how the relationship between the
search and the posterior probabilities works in practice. We start by ®nding an initial basic subset
for each group, as we did for one group in Section 3.3, as the intersection of observations within a
suitably chosen set of elliptical contours on scatterplot matrices similar to Figure 4. The combina-
tion of the three groups of units gives a subset which may not have equal numbers from each
group. We ®rst use the forward search to equalize the numbers present in each group, the search
again being on Mahalanobis distances, with a common covariance matrix, but, of course, with
di�erent means for each group. Once equality of numbers from each group has been achieved, we
maintain approximate equality by adding no more than one unit from each group until equality is
again achieved. The order in which observations from the three groups are added depends on the
Mahalanobis distances, which, since there is a common covariance matrix, are recalculated after
each addition. We also experimented with the inclusion of units without paying attention to their
group. This tended to result in the inclusion of a set of units from one group, followed by a set of
units from another group. The results from such forward searches were more di�cult to interpret
than those in which we maintained balance.

Figure 9 gives, as a function of subset size, the calculated posterior probabilities that observa-
tions in groups 2 and 3 belong to those groups. The plots start with a subset size of 102, out of the
total 150 observations. During this period only four units from group 2 ever have posterior
probabilities less than 0.6: two, units 71 and 84, are ®nally misclassi®ed. For group 3 only unit
134 is misclassi®ed. We do not show the plot for group 1 as all units in every step of the search are
correctly classi®ed with posterior probabilities of at least 0.99.

The pattern in Figure 9 is stable to the contour used to choose the initial subset. We have
experimented with the addition of outliers, which cause noticeable jumps at the end of the plot of
posterior probabilities, but will report these results elsewhere. The jumps occur at the end of the
series because the outliers are the last units to be included by the forward search.

We also monitored a number of other quantities during the progress of the forward search.
Two are plotted in Figure 10. The ®rst panel shows the maximumMahalanobis distance of those
units which belong to the subset for each group. The second panel shows the minimum distance
for each group of those units not in the subset: apart from the constraint caused by the need to
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keep group sizes equal, these would be the next units to be included in the subset. The ®rst thing
to notice is the very di�erent sizes of the distances for the groups. If a di�erent covariance matrix
were used for each group, we know that the distances for the ml units in the subset for the lth
group would sum to v�ml ÿ 1). The pattern shown here is evidence that, in general, the
covariance matrices of the three groups should not be treated as equal. Most important, however,
is the behaviour of the distances for group 1. The observations entering group 1 from 137 onwards
(and which gave large distances in panel 1 from 133 on as the next to enter) are 33, 34, 15, 16 and
42. If these were outliers and the covariances were estimated independently for each group, the
e�ect of these additions on the Mahalanobis distances would rapidly die down: inclusion of these

Figure 9. Iris data. Posterior probabilities, as a function of subset size, that observations in groups 2 and 3 respectively
belong to those groups

Figure 10. Iris data. Maximum Mahalanobis distances, for the three groups, of units belonging to the subset and
minimum distances for those units not belonging: reading upwards in the left half of the plots, groups 1, 2 and 3
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units in the estimation of the covariance matrix would rapidly lead to masking. But here a
succession of outliers enter from one group, so only have a partial e�ect on the common
covariance matrix. They therefore remain visible in the plot.
In line with our contention of the importance and usefulness of returning from the forward

analysis to further inspection of the data, we now give interpretations of these ®ndings in the
space of the original data. Figure 11 shows the scatterplot for petal width and sepal length
for units in groups 2 and 3. Those which were sometimes misclassi®ed are represented by ®lled
symbols. For two of the three units (71, 84 and 134) which are misclassi®ed at the end of the
forward search, there are units in the other group which have identical observed values for these
two variables. More precisely unit 71 (coordinates 3.2 and 1.8) presents the same values as unit
126 and unit 134 (2.8 and 1.5) overlaps with 55. Examination of the scatterplot matrix with
brushing shows that observations 134 and 55 are very close to each other in all bivariate
scatterplots. On the left side of Figure 11, unit 69 (coordinates 2.2 and 1.5) overlaps with
observation 120. Among the units of group 3, observation 120 is, apart from 134, the one which
shows the smallest posterior probability (0.779) in the last step of the forward search.

The discriminant line dividing the two groups is not shown in Figure 11, but passes close to
units 73 (2.5, 1.5), 78 (3, 1.7) and 139 (3, 1.8). As Figure 9 shows the posterior probability of
observation 73 ¯uctuates appreciably even though this unit is always categorized correctly from
m � 136 onwards. In all steps of the forward search, unit 78 always has a posterior probability
around 0.65. Unit 139 is, apart from 134, the one in group 3 showing the smallest posterior
probability in almost all steps of the forward search.

The two remaining pluses in Figure 11 which appear close to triangles refer to units 135
(2.6 and 1.4) and 130 (3.0 and 1.6). Unit 135 is the last of the third group to be included in the
forward search: it has a ®nal posterior probability of 0.934. During the forward search unit
130 always shows a posterior probability around 0.90 (the ®nal value is 0.896).

There remains unit 84 (2.7, 1.6), the third to be misclassi®ed at the end of the forward search. It
is included when m � 142. Thereafter the posterior probability that this unit belongs to group 2

Figure 11. Iris data. Scatterplot of two variables showing, by ®lled symbols, the units sometimes misclassi®ed. Triangles
are for group 2, pluses and diamonds for group 3
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tends generally to increase. Its ®nal posterior probability is 0.143. An analysis of the scatterplot
matrix reveals that, in almost all the bivariate plots, this unit is surrounded by some observations
belonging to group 3.

Finally, in Figure 12, we plot the units which, towards the end of the search gave the large
increases in Mahalanobis distances for group 1. The last of all to enter is unit 42, very much an
outlier from group 1. The other four units form a cluster at the end of group 1. If these ®ve units
are excluded, the bivariate scatters of group 1 are more like those of the other groups. This e�ect
is strongest in the leftmost panel of the ®gure.

5.2 Conclusions

Our analysis of the iris data shows, we believe, that the forward search technique in discriminant
analysis is an extremely useful tool. As a result we can:

1. Highlight the units which are always classi®ed correctly with high posterior probability in
each step of the search. These can be separated from those units which are declared correctly
only when they are included in the allocation rule.

2. See the evolution of the degree of separation or overlapping among the groups as the subset
size increases and determine the relationship with those units which have a posterior
probability close to 0.5.

3. Monitor the stability of the allocation rule with respect to di�erent sample sizes.
4. Determine the in¯uence of observations by separating the units with the biggest

Mahalanobis distances into two groups: those which have an e�ect on the posterior
probabilities and those which leave them unaltered.

In our example, monitoring the posterior probabilities enabled us to distinguish the units whose
posterior probabilities tended to increase as the sample size grew (e.g. units 69 and 73), those
whose posterior probability was close to 0.5 (e.g. units 78, 71 and 134) and those which were
always completely misclassi®ed (e.g. unit 84). If we have to classify a new unit we can monitor its
posterior probability at each step of the forward search. In this way we can have an idea about the
stability of the associated allocation and therefore which and how many observations are
responsible for its allocation to a particular group.

Figure 12. Iris data. Three scatterplots of pairs of variables showing, for group 1 (diamonds), the last units to be included
in the forward search. These are the observations yielding the large Mahalanobis distances in Figure 10
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6. DISCUSSION

We have demonstrated the diagnostic use of the forward search for transformations to normality
and for discriminant analysis. Plots as the search progresses of quantities of inferential import-
ance, such as Figures 5, 9 and 10, provide clear and informative indications of the importance of
individual observations. Similarly informative plots can be generated for many other statistical
procedures. The simplest is probably multiple regression, where outliers and in¯uence on para-
meter estimates can be monitored as the search progresses. Our results on discriminant analysis
indicate howMahalanobis distances may be usefully monitored in the simpler problem of ®nding
outliers in one multivariate sample. We will report on this work elsewhere, as we will on that on
time series: the use of structural modelling combined with e�cient modern algorithms for the
Kalman ®lter with missing values makes it possible to ®t time series models to very few observa-
tions and so to conduct an informative forward search.
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