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Abstract

The fan plot of the score statistic for transformation during the forward search is a powerful tool for detecting masked

outliers that indicate an incorrect transformation. We use simulation to investigate the distribution of this statistic during the

search. Data structures where the normal approximation is, and is not, satisfactory are characterised. D 2002 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Oftentimes, data need transforming before standard

methods of analysis, such as regression, can be

applied. The examples in this paper are time of

survival and numbers of cycles to failure. Both are

non-negative and, for example, the numbers of cycles

range from 90 to 3636, so that a normal model with

additive errors of constant variance is implausible. We

use the Box and Cox parametric family of power

transformations to find a suitable transformation of

such data. Our interest is in the effect of outliers on

estimation of this transformation and in the use of a

robust, diagnostic method, the forward search, to find

the transformation in the presence of multiple outliers.

Standard classical methods for finding outliers and

influential observations start from a fit to all the data

and then proceed backwards by the deletion of suspect

observations. This procedure can be subject to mask-

ing, where several outliers hide the effect of each

other, so that the data appear outlier-free. Robust

methods, such as those described in Ref. [1], can

overcome masking and reveal outliers. We use robust-

ness, combined with the forward search, described in

detail by Ref. [2], both to overcome masking and to

reveal the importance of individual observations. The

method starts from a small subset of the data and

works forward by increasing the number of observa-

tions used in fitting. A useful diagnostic tool is to

monitor the value of the score test for transformations

during the search. Jumps in the plot indicate influen-

tial observations and may lead to the unmasking of

multiple outliers.

In the forward plot, we judge the significance of

the test statistic by reference to the normal distribu-

tion. The question posed in this paper is whether this
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is an appropriate distribution. To find the answer, we

use simulations to estimate the distribution of the

statistic. The answer is that, in many examples, there

is a negligible effect of the forward search on the

statistic and that the normal approximation is a useful

guide. The important corollary to this answer is that

we are able to characterise those examples in which

the normal approximation is poor.

In the next section, we introduce the test statistic

for transformations. Section 3 describes the forward

search. Examples of forward plots of the transforma-

tion statistic are in Section 4. Two ways in which the

normal approximation may fail are characterised in

Sections 5 and 6. The paper ends with a few general

comments.

2. Transformations of the response in regression

Box and Cox [3] analyse the normalized power

transformation

zðkÞ ¼
ð yk � 1Þ=ðk _yk�1Þ k a 0

_ylogy k ¼ 0;

8<
: ð1Þ

where the geometric mean of the n observations is

written as ẏ = exp(
P

log yi/n). The hope is that, for

some k which has to be estimated, the transformed

observations will satisfy the linear regression model

zðkÞ ¼ xTb þ �; ð2Þ

where x is p� 1 and the errors � are independently

normally distributed with constant variance r2.

For inference about the transformation parameter k,
Box and Cox suggest the likelihood ratio test statistic.

A disadvantage of the test is that a numerical max-

imisation is required to find the value of the maximum

likelihood estimator k̂. For regression models, a com-

putationally simpler alternative test of the hypothesis

k = k0 is the approximate score statistic derived by

Taylor series expansion of Eq. (1) as

zðkÞW zðk0Þ þ ðk � k0Þwðk0Þ; ð3Þ

where

wðk0Þ ¼
DzðkÞ
Dk

����
k¼k0

:

If the linearized response (3) is substituted in the reg-

ression model (2), the model becomes

zðk0Þ ¼ xTb � ðk � k0Þwðk0Þ þ �: ð4Þ

Because Eq. (4) is again a regression model with an

extra variable w(k0) derived from the transformation,

the new variable is called the constructed variable for

the transformation. If the true value of k is close to k0,
the coefficient (k� k0) of the constructed variable will

be small. The regression model (4) can be rewritten

more conventionally by putting c =� (k� k0) when

zðk0Þ ¼ xTb þ cwðk0Þ þ �: ð5Þ

Small values of c then indicate that no transformation

is necessary. The approximate score statistic Tp(k0) for
testing the transformation k = k0 is just the t-statistic

for the coefficient of regression on w(k0) in Eq. (5).

This can be calculated either directly from the multi-

ple regression in Eq. (5), or from the formulae in Ref.

[4, Chap. 6] in which multiple regression on x is

adjusted for the inclusion of the constructed variable.

Such formulae give insight into the structure of the

approximate score test but do not alter the numerical

value of the statistic.

Similar ideas can be used for transformation of the

explanatory variables [5]. Constructed variables for

the joint transformation of the response and of explan-

atory variables, together with score tests, are given by

Ref. [4, Section 8.4]. Whatever the formal statistical

outcome of such procedures, the interpretability of the

results is also of importance in finding a sensible

transformation.

3. The forward search

3.1. General principles

Like most methods for outlier detection, our

method divides the data into two parts: a larger

‘‘clean’’ part used for parameter estimation, and the

outliers. The simplest division is into one potential

outlier and the rest of the data, leading to single dele-

tion diagnostics. Standard books on regression diag-

nostics, such as Refs. [4,6,7], include formulae for

multiple deletion diagnostics, in which a small num-

ber, perhaps two or three, of potential outliers are
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considered at once. However, there is a combinatorial

explosion of the number of cases that have to be

considered by such backwards working. We instead

employ very robust methods that perform well even if

almost half the observations are outliers.

We start our search with the resampling algorithm

for least median of squares regression [8] in which the

model is fitted to p observations. In the forward

search, larger subsamples of outlier free observations

are found by starting from this subset and moving to

larger subsets containing observations which have

small residuals, and so are unlikely to be outliers.

We use least squares to estimate the parameters from

the selected subset of m observations, obtaining vec-

tors of estimates b̂(m) with m running from p to n.

From these parameter estimates, we calculate a set of

n residuals. For each m, we plot the score statistic for

transformations Tp(k), monitoring changes associated

with the introduction of a particular observation into

the subset m used for fitting.

Since the forward search is described in detail in

Ref. [2], only an outline is given here of the three

steps.

3.2. Step 1: choice of the initial subset

If the model contains p parameters, our forward

search algorithm starts with the selection of a subset

of p units, which give an approximation to the least

median of squares estimate. Observations in this

subset are intended to be outlier free. If n is moderate

and pKn, the choice of the initial subset can be

performed by exhaustive enumeration of all n
p

� �
dis-

tinct p-tuples; otherwise, we evaluate the properties of

some large number of p-tuples, often 1000. If ei,SS
p is

the least squares residual for unit i given observations

in SS
p are used in fitting, the initial subset S p

� is such

that

e2½med	;Sp� ¼ minS

h
e2½med	;Sp

S

i
; ð6Þ

where e2[l ], SS
p is the lth ordered squared residual among

e2[i ], SS
p, i= 1,. . ., n,

med ¼ ½ðnþ pþ 1Þ=2	; ð7Þ

and [ q] denotes the integer part of q. Criterion (6)

provides a least median of squares method for regres-

sion models with independent errors [8,9]. The break-

down point of this estimator is asymptotically 50%.

The forward search is not sensitive to the method used

to select the initial subset: for example, least trimmed

squares could be used in which the median in Eq. (6)

is replaced by summation over a fraction of the

observations.

3.3. Step 2: adding observations during the forward

search

Given a subset S�
m of m
 p observations, the

forward search selects the m + 1 units with the small-

est squared least squares residuals, the units being

chosen by ordering all squared residuals e2i ,S�
m, i

= 1,. . .,n.
In most moves from m to m + 1, just one new unit

joins the subset. However, sometimes, two or more

units may join S �
m as one or more leave. Such an event

is unusual, only occurring when the search includes

one unit that belongs to a cluster of outliers. At the

next step, the remaining outliers in the cluster seem

less outlying and so several may be included at once.

Of course, several other units then have to leave the

subset. Step 2 of the forward search is repeated until

all units are included in the subset.

3.4. Step 3: monitoring the search

There are three particular consequences of this

procedure:

(1) Stability. In the absence of outliers and system-

atic departures from the model, the parameter esti-

mates for each m are unbiased estimators of the same

quantity. So, both parameter estimates and residuals

should remain approximately constant during the

forward search.

(2) Ordering. If there are k outliers and we start

from a clean subset, the forward procedure will

include these outliers towards the end of the search,

usually in the last k steps. Until then, residual plots

and parameter estimates will remain approximately

constant.

(3) Transformations. Outliers in one transformed

scale may not be outliers in another scale. If the data

are analysed using the wrong transformation, the k

outliers may enter the search well before the end. We

therefore need to analyse the data using several values
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of k. We have given the name ‘‘fan plot’’ to the

simultaneous forward plot of the score statistic Tp(k)
for several values of k.

4. Examples of transformation of the response

Our interest is in the distribution of the test sta-

tistic Tp(k) as the forward search progresses. To

motivate this interest, we give two examples of fan

plots. However, in this section, we focus our attention

on the properties of the plot for a single value of k.
The distribution of the statistic is estimated by sim-

ulating 10,000 samples of data and performing one

forward search on each from the best of 100 initial

subsets. The examples, without simulation envelopes,

and the fan plots are fully discussed in Chap. 4 of

Ref. [2]. The extension to multivariate data is in Ref.

[10].

4.1. Wool data

The first example is the wool data from Ref. [3]

which are the number of cycles to failure of a worsted

yarn under repeated loading. The results are from a

single 33 factorial experiment so that n = 27. The non-

negative response ranges from 90 to 3636, so we

would expect that a transformation would be appro-

priate. Box and Cox recommend the log transforma-

tion of y. This transformation is supported by a value

of � 0.91 for Tp(0), the values of � 0.5 and 0.5 for k
being rejected.

This analysis is uninformative about the contribu-

tion of individual observations to the transformation.

Fig. 1 is the fan plot, that is the forward plot of the ap-

proximate score statistic Tp(k) for the five values of

k: � 1.0, � 0.5, 0, 0.5 and 1. Each search is separate,

so that the observations may, and do, enter in different

orders in the five searches. The value of Tp(� 1) is at

Fig. 1. Wool data: fan plot—forward plot of the score statistic Tp(k) for five values of k with theoretical 99% confidence band. Only the log

transformation, k= 0, is acceptable.
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the top of the plot. The value of Tp(0) lies within the

central bands on the plot which are at F 2.58, con-

taining 99% of the standard normal distribution.

Provided the statistic has this null distribution, the

indication is that the log transformation is acceptable.

The other four curves move steadily outside this

region as the search progresses, indicating the rejec-

tion of the other values of k, the smoothness of the

curves showing that this conclusion does not depend

on one or a few outliers. The contrast with Fig. 4 is

informative and is discussed in Section 4.3.

We now investigate the null distribution of Tp(0).

The score test is a t-test for regression on a con-

structed variable which is a function of the response.

If this relationship between y and w is ignored, we

would expect the score statistic to have a t distribu-

tion, apart from any effect of the ordering of obser-

vations due to the forward search. Fig. 2 shows the

forward plot of Tp(0) for the wool data during the

forward search, together with the results of 1000

simulations when the data are generated with k = 0

using the parameter estimates for this value of k. The
simulated 90, 95 and 99 percentage points of the

distribution of the statistic show that the distribution

of the statistic starts with longer tails than the normal

but that, by half-way through this search, the distri-

bution is close to the asymptotic standard normal

distribution. The agreement is very good until the

end of the search when there is a slight spreading of

the distribution, recalling the bell of a trumpet. This

slightly larger variance when m = n is in line with the

simulation results of Ref. [11].

4.2. Poison data

Our second example is the Poison data from Ref.

[3]. The observations are time to death of animals in a

3� 4 factorial experiment with four observations at

each factor combination. Box and Cox suggest the

reciprocal transformation (k =� 1), so that death rate,

rather than survival time, has a simple structure. Fig. 3

shows the evolution of Tp(� 1) during the forward

Fig. 2. Wool data: forward plot of Tp(0) with 90%, 95% and 99% theoretical confidence bands and simulation envelopes using parameter

estimates b̂(n) from the end of the search when k= 0.
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search. The values are in the centre of the region and

the transformation is supported by the plot. Again, we

see good agreement between the simulated distribu-

tion and the normal distribution. Here, there is some

slight evidence of a longer upper tail to the distribu-

tion towards the end of the search, although not

enough to cause difficulty in interpreting the plot.

We return to consideration of this slight skewness in

Section 6.

4.3. Multiple modified Poison data: an example of

masking

Our examples so far have shown that the plots can

be well behaved in the absence of outliers. Atkinson

and Riani [2] modified the Poison data to create four

masked outliers which are not revealed by single

deletion diagnostics and which indicate the incorrect

transformation of k = 1/3. Fig. 4 is the fan plot for

these modified data, which is quite different from the

fan plot for the wool data in Fig. 1. The curves are no

longer smooth. That for Tp(� 1), reflecting the correct

transformation for all but four observations, lies

within the central boundary until the inclusion of the

last four observations, which are the outliers, when the

reciprocal transformation is overwhelmingly rejected.

The plot clearly indicates that these four masked

outliers are causing rejection of the transformation

that is supported by the bulk of the data. The effect is

similar, but less dramatic, for Tp(� 0.5). The score

statistics for the other values do not have such simple

shapes—they enter and leave the central boundaries as

the outliers enter these searches before the end. A

more detailed description of this plot starts on p. 106

of Ref. [2].

Since the overall analysis suggests k = 1/3, we now
look at the forward plot of Tp(1/3) which is in Fig. 5.

This also, of course, shows the effect of the four

masked outliers, but in a different way. The outliers

now enter towards the end of the forward search but

are not the last four observations to enter. They cause

the score statistic for this incorrect transformation to

lie in the centre of the null distribution at the end of

the search. The simulated values agree reasonably

Fig. 3. Poison data: forward plot of Tp(� 1) with 90%, 95% and 99% simulation envelopes using parameter estimates b̂(n).
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Fig. 5. Multiple modified Poison data: forward plot of Tp(1/3) with 90%, 95% and 99% simulation envelopes using parameter estimates b̂(n).
The effect of the outliers in producing an erroneous transformation for all the data is evident.

Fig. 4. Multiple modified Poison data: fan plot. The effect of the four outliers on the correct transformation for k=� 1 is evident.
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with the normal quantiles, except for a slight down-

ward bias at the end of the search together with a

slight trumpet.

The effect of the four outliers is, as we have seen in

the fan plot, overwhelming on Tp(� 1), given again in

Fig. 6. The simulation envelopes shown in the figure,

which agree well with the theoretical values, apart

from a slight upward bias towards the end of the

search, used the parameter estimates from m = n� 4,

that is when all the outliers have been rejected.

5. Trumpets and constructed variables

In this section, we look at the relationship between

the simulation envelopes and the parameter values

used in the simulations. In envelopes of residuals in

regression [4, p. 35] the linear model used for simu-

lation does not matter and a sample of standard

normal variables is used. What does matter is the

hat matrix of the model fitted to the data, which

affects the variances and covariances of the residuals.

However, in transformation, the parameters of the

linear model can also have an effect. An obvious

effect is that, for a power transformation to be

considered, all observations must be positive. This

effect is studied in the next section. Here, we study the

rather more subtle effect of the dependence of the

trumpet at the end of the search on the values of the

parameters.

The effect of the trumpet was smallest in Fig. 2, for

which the squared multiple correlation coefficient R2

had the value 0.97 at the end of the search. For the

other plots, R2 was slightly less. To see whether R2 is a

useful way of characterising plots, Fig. 7 shows, for

the wool data, simulation envelopes in which the

linear model has the same constant and value of s2

as those in the data, but in which the values of the

remaining three parameters b in the linear model have

been divided by 10, that is, b= b̂(n)/10. As a result,

the average value of R2 in the simulated data sets is

reduced to 0.28. The effect on the simulation enve-

lopes, compared to those in Fig. 2, is clear. Although

symmetrical, the envelopes are now too large through-

Fig. 6. Multiple modified Poison data: forward plot of Tp(� 1) with 90%, 95% and 99% simulation envelopes using parameter estimates b̂(n� 4)

when k=� 1, that is after deletion of the four outliers.
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Fig. 7. Wool data: forward plot of Tp(0) with 90%, 95% and 99% simulation envelopes using parameter estimates b= b̂(n)/10. There is now a

trumpet towards the end of the envelopes.

Fig. 8. Poison data: forward plot of Tp(� 1) with 90%, 95% and 99% simulation envelopes using parameter estimates b=b̂(n)/10. There is now
an increase in both skewness and the trumpet effect.
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out, especially towards the end of the search, where

there is an appreciable trumpet.

A similar plot for the Poison data is given in Fig. 8.

The effect of division by 10 is to reduce the value of

R2 from 0.85 to an average of 0.15. There is now a

clear upper trumpet and the asymmetry of the simu-

lation envelope has increased. Similar results are

found for the stack loss data, but not presented here.

That a low value of R2 accompanies wide simu-

lation envelopes at the end of the search can be

explained by considering the structure of the con-

structed variable plots, which are scatter plots of

residual transformed response against the residual

constructed variable. The score statistic Tp(k) is the

t-test for interceptless regression in this plot. In the

absence of evidence for a transformation, this plot

often looks like a random scatter of points. However,

in simple cases, the plots can have a near parabolic

structure, even when there is no evidence for a trans-

formation. Examples, some discussion and a Taylor

series justification for the parabolic structure are given

in Ref. [4, p. 192].

Panel (a) of Fig. 9 shows the forward plot of

Tp(� 1) for the Poison data when only a constant is

fitted. Although the transformation is correct when the

factorial model is fitted, the inadequate model without

effects seems to lead to the rejection of this value of k.
The other two panels are constructed variable plots. In

both plots, the points lie on a nearly parabolic curve.

Panel (b) of the plot is for the m = n� 9 pairs of

residuals at that point in the forward search. It is

nearly symmetrical, giving a value close to zero for

the score test. In Panel (c), for all the data, there is

asymmetry which will be reflected in the non-zero

value of the score test. This figure shows both the

structure of the plots and the way in which the

ordering of the observations by the search causes

extreme observations on the parabola to enter towards

the end of the search.

If there are several explanatory variables and

strong regression, the parabolic pattern disappears.

However, if there is weak regression, giving a low

Fig. 9. Poison data with k=� 1 when only a constant is fitted: panel

(a) forward plot of Tp(� 1) with theoretical 99% confidence band;

panel (b) added variable plot for m= n� 9; panel (c) added variable

plot for all the data: the filled symbols are the last observations to

enter (some symbols overlap).
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value of R2, the effect is to jitter the parabola, the

curves for groups of observations with a common

fitted value being slightly displaced. An example is

shown in the three panels of Fig. 10. The data were a

simple random sample of 50 observations to which an

intercept and three randomly generated explanatory

variables were fitted. As a result, the value of R2 is

approximately zero.

Panel (a) shows a forward plot of Tp(1) which

increases sharply at the end, although the data were

not simulated to need a transformation. This behav-

iour is close to that of the plot in Panel (a) of Fig. 9,

suggesting that the evidence for rejection of the

reciprocal transformation may not be as strong as it

appeared. Panel (b) shows the constructed variable

plot when three observations have been removed

(m = n� 3). A symmetrical plot is obtained. The last

panel for m = n shows a blurred parabola which is

asymmetric, the three observations causing the regres-

sion on the constructed variable being clearly visible.

Overall, these plots show how, in the absence of

regression structure in the data, spurious structure

can occur in the constructed variable plots. Averaging

over a number of simulations, many of which have

this structure, gives rise to the trumpet in the simu-

lation envelope observed in Figs. 7 and 8 in which the

value of R2 had been made artificially small. These

results are a reminder that the evidence for a trans-

formation depends on the structure of the linear

model, if any, as well as on the distribution of errors.

6. Biases

Finally, we look at the biases in the distribution of

the statistic that can be introduced by an inappropriate

model.

Fig. 11 is the forward plot of Tp(� 1) for the

multiple modified Poison data when the parameter

estimates used in the simulation are those at the end of

the search when the four outliers are included. As in

Fig. 6, the observed value of the score statistic shoots

up at the end of the plot. However, now, there is a

Fig. 10. Simulated data with no structure: panel (a) forward plot of

Tp(� 1); panel (b) added variable plot for m= n� 3; panel (c) added

variable plot for all the data. The filled symbols are the last ob-

servations to enter.
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strong curve in the simulation envelope, which is far

from having a zero mean, even though the simulations

were performed using normal random variables and

with k=� 1.

The explanation for this behaviour lies in the

approximate nature of the Box–Cox procedure. For

the transformation to be possible, the observations

have to be positive and so have a truncated, rather

than full, normal distribution. In our calculations,

simulated values giving negative values of y were

rejected and resampled until a positive value was

obtained. In generating Fig. 11, less than one-tenth

of the simulated values could be used, so that sam-

pling was very much skewed from a tail of the normal

distribution. Because of the skewed shape of this

conditional distribution, there is an apparent need

for transformation, reflected in the positive values in

the envelope towards the end of the search.

This explanation of skewness applies also to the

lesser asymmetries seen in the envelopes in some of

the other plots. To produce the 10,000 samples on

which Fig. 11 is based, 113,266 negative simulated

values of y were rejected. For other plots, the numbers

were much more modest, around 900 for the two

simulations of the unmodified Poison data in Figs. 3

and 8, and 757 for the multiple modified Poison data

in Fig. 6 with parameter estimates from m = n� 4. A

final plot is again of the multiple modified Poison data

again using the parameter estimates from the last stage

of the search, but now with k =� 0.5. With this value

of k for simulation, there is an identically zero proba-

bility of generating a negative observation. As Fig. 12

shows, the simulation envelope is now well behaved,

similar to that in Fig. 6 when k =� 1 but the param-

eter values used are for m = n� 4. In this new plot, the

observed value of the statistic trends downward, sug-

gesting ultimate rejection of k =� 0.5, a pattern which

is destroyed by the presence of the outliers.

The comparison of the two sets of simulation

envelopes in Figs. 11 and 12 confirms the importance

of the truncated distribution of simulated values in

skewing the distribution of the statistic. That there is

an identically zero probability of generating negative

values in the simulations for some values of k comes

Fig. 11. Multiple modified Poison data: forward plot of Tp(� 1) with 90%, 95% and 99% simulation envelopes using parameter estimates b̂(n)
from k=� 1.
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from inverting the regression model (2) used for

simulation. From the expression for the normalized

transformation (Eq. (1)), the simulated values satisfy

y ¼ ½1þ k_y k�1ðxTbþ �Þ	1=k; ð8Þ

where b is the parameter value used in the simulation.

If, for example, k = 0.5, y is found by squaring the

normal random variable on the right-hand side of Eq.

(8), and so is never negative, even when the right-

hand side is. However, there is also a source of slight

bias here. When the data are transformed back to

approximate normality, information on the sign of the

square root is not available. Thus, if there is a non-

negligible probability of negative values being gen-

erated before squaring, the distribution of My will be a
truncated normal with some extra mass just above

zero. This source of non-normality will result in a bias

in the simulated envelope. Negative values in Eq. (8)

are avoided for the special values k = 0, F 1/2, F 1/4,

F 1/6,. . . If k = 0, the power in Eq. (8) is replaced by

exponentiation so that problems of truncation do not

occur. We have already noted the symmetrical enve-

lopes found for the wool data in Figs. 1 and 7.

A last characteristic of interest is the sign of the

biases which, from Eq. (8), will change with the sign

of k. Our results show that negative values of k give

positively skewed distributions, whereas those for

positive k are negatively skewed. Only when k = 0 is

the distribution symmetrical.

7. Discussion

We have shown that, in many cases, the normal

approximation to distribution of the score test holds

well enough to provide a useful guide for inference.

There is often no, or a negligible, effect of the forward

search on the distribution of the statistic.

We have also characterised cases where the simu-

lated distribution may not hold. One is when the value

of R2 is low, so that the fitted model is explaining only

a small part of the variation in the data. The other is

when there is a non-negligible probability that neg-

Fig. 12. Multiple modified Poison data: forward plot of Tp(� 0:5) with 90%, 95% and 99% simulation envelopes using parameter estimates b̂(n)
for k=� 0:5. To be compared with Fig. 11.
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ative values of the response could be generated by

simulation from the fitted model, which requires that

the fitted values ẑ should be such that ẑ/s > 3, or so,

where s is the residual mean square estimate of the

error standard deviation. The transformation model

may be inappropriate for data for which this inequality

does not hold. Both of these cases are easily identi-

fied. In their absence, simulation is not necessary and

the standard normal distribution provides a good

guide to the behaviour of the forward plot of the

score statistic.

A final point is that we have studied the properties

of plots for a single value of k. In the analysis of data, it
is important to use several values of k if masking is to

be detected. The fan plot is one way of achieving this.

An S-Plus library for the forward search in regres-

sion, including fan plots, is available at our web site

http://www.stat.econ.unipr.it/riani/ar.
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