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S

Monitoring the t-tests for individual regression coefficients in ‘forward’ search fails to identify
the importance of observations to the significance of the individual regressors. This failure is due
to the ordering of the data by the search. We introduce an added-variable test which has the
desired properties since the projection leading to residuals destroys the effect of the ordering. An
example illustrates the effect of several masked outliers on model selection. Comments are given
on the related test for response transformations.
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normality; Very robust methods.

1. I

Forward search is a powerful general method for detecting multiple masked outliers, for determin-
ing their effects on models fitted to data and for detecting systematic model inadequacy. Here we
develop a method for detecting the effects of individual observations on the t-tests for coefficients
in a regression model and derive the distribution of the statistics. We show how our new procedure
can aid model selection. We also mention the distributional properties of a related test for
transformations.

Forward search is briefly described in the next section. In § 3 the forward plot for added-variable
t-statistics is defined and its properties are derived. Theoretical results and simulations show that
the statistics have the correct t-distribution, independently of the ordering of the observations.
Examples with outliers are in § 4: the effect of the outliers is clearly revealed. Brief comments on
the related plot for transformations conclude the paper.

2. F    

Details of forward search for regression are given in Atkinson & Riani (2000, Ch. 2). The method
starts by fitting a small, robustly chosen, subset of m of the n observations to the data. In the
example in this paper we start with m=p, the number of parameters in the regression model. We
sample 1000 subsets to each of which a regression is fitted by least squares and take as the starting
subset that which yields the smallest median squared residual. This is the algorithm for least median
of squares introduced by Rousseeuw (1984). We move forward to a larger subset by ordering the
n squared residuals from the least squares fit to the subset of m observations and using the m+1
observations with the smallest squared residuals as our new larger subset. Usually one observation
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is added to the subset at each step, but sometimes two or more are added as one or more leave,
which is often an indication of the introduction of some of a cluster of outliers. In this way we
obtain a series of parameter estimates for p∏m∏n, which progresses from very robust at the
beginning of the search to least squares at the end. In the absence of outliers, the parameter
estimates and plots of all n residuals remain stable as m grows; an example is Atkinson & Riani
(2000, p. 71). The search is such that observations which are far from the fitted model enter at the
end of the search; these may be outliers, or an unidentified subset, or they may indicate a systematic
failure of the model. The analysis of the Box & Cox poison data in Atkinson & Riani (2000, § 4.4)
shows the dependence of the order in which observations enter the subset used in fitting on the
transformation employed.

During the search we monitor quantities indicative of model quality or inadequacy. In addition
to residuals we can look at score tests for transformations or for link functions, or measures of
curvature in nonlinear models. We can also study the evolution of plots, for example of profile
likelihoods. In regression we can monitor the evolution of s2, the estimate of the error variance.
Since the search orders the observations by the magnitude of their residuals from the fitted subsets,
the value of s2 increases during the search, although not necessarily monotonically. As a conse-
quence, even in the absence of outliers and model inadequacies, the values of the t-statistics for
the parameters in the model decrease during the search and are hard to interpret. An example is
Atkinson & Riani (2000, p. 72). Here we use the method of added variables to provide plots of
t-tests which are orthogonal to the search.

3. A - t-

3·1. Added variables

In order to obtain useful forward plots of t-tests we write the regression model for all n obser-
vations as

y=Qh+e=Xb+wc+e, (1)

where Q is n×p, the errors e satisfy the second-order assumptions with variances s2 and c is a
scalar. In turn we take each of the columns of Q as the vector w, except for the column corresponding
to the constant term in the model. The well-established approach of added variables (Atkinson &
Riani, 2000, § 2.2) leads to an expression for the least squares estimator c@ as a function of residuals
from the regression of y and w on X. This representation also leads to added variable plots
(Cook & Weisberg, 1982, p. 44; Atkinson, 1985, p. 67) which can be used to detect an influential
observation, although deletion methods are preferable (Atkinson, 1985, § 12.3).

The least squares estimator of b is b@ , with hat matrix H=X(XTX)−1XT. The least squares
residuals of y and w are

e=y*=y−y@= (I−H)y=Ay, (2)

w*= (I−H)w=Aw. (3)

The least squares estimator c in (1) is

c@=w*Te/(w*Tw*)=wTAy/(wTAw), (4)

with variance

var (c@)=s2/(w*Tw*)=s2/(wTAw). (5)

Calculation of the t-statistic for c also requires s2
w
, the residual mean square estimator of s2 from

regression on X and w, which can be written as

(n−p)s2
w
=yTAy− (yTAw)2/(wTAw). (6)

The t-statistic for testing that c=0 is thus

t
c
=c@/{s2

w
/(wTAw)}D. (7)
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3·2. Adding an observation in the forward search

In a forward search the quantities of § 3·1 are calculated for a subset of size m. We now derive
the effect on the values of c@ and of t

c
, of adding observation m+1.

From (6) the residual sum of squares of regression of m observations only on X can be written

R(y, y)=yTAy. (8)

Let the new observation be y
+

, with explanatory variables x
+

and w
+

. The leverage of the new
observation is

h
+
=xT
+
(XTX)−1x

+
, (9)

which is nonnegative, but, unlike leverages for deletion, may exceed one. The residual for the new
observation is

e
+
=y*
+
=y
+
−xT
+
b@ . (10)

Let R
+
(y, y) be the residual sum of squares of the m+1 observations after regression on X and

x
+

. The Bartlett–Sherman–Morrison–Woodbury formula is customarily used as one way of deriv-
ing deletion diagnostics; Cook & Weisberg (1982, p. 210) and Atkinson & Riani (2000, § 2.7) give
references. With a change of sign it can be used for the addition of observations when it follows
that

R
+
(y, y)=R(y, y)+e2

+
/(1+h

+
)=yTAy+y*2

+
/(1+h

+
). (11)

The expressions for c@, s2
w

and t
c
are all functions of the form R(a, b) where the vectors a and b are

either w or y. It then follows from (11) that these residual sums and products after the addition of
one more observation become

R
+
(a, b)=R(a, b)+a*

+
b*
+
/(1+h

+
)=aTAb+a*

+
b*
+
/(1+h

+
), (12)

where a*
+

and b*
+

are the residuals of a
+

and b
+

, as in (10), after regression on X.
As a result of these relationships we can, for example, write the t-test (7) for m+1 observations

as

t+
c
=

(m+1−p)1/2R
+
(w, y)

{R
+
(y, y)R

+
(w, w)−R2

+
(w, y)}D

, (13)

with the quadratic forms given by (12).

3·3. Orthogonality and the noncentrality parameter

Since the search orders the data using all the variables in Q, that is X and w, the observations
in the subset are the m+1 smallest order statistics of the residuals from the parameter estimate
h@*
m
. These observations yield small estimates of s2 and over-large values for the t-statistics, especially

at the beginning of the search.
We now show that the added-variable test is not affected by the ordering of the data and so has

the required distribution.

R. T he added variable test (7) follows the t-distribution under the customary normal
conditions for regression models.

Proof. In searches using the added-variable test, we fit the reduced model E(Y )=Xb, the
residuals from which are used to determine the progress of the search. We do not include w in the
model. The choice of observations to be included in the subset thus depends only on y and X.
However, the results of § 3·1 show that the added-variable test (7) is a function solely of the residuals
w* and y*, which by definition are in a space orthogonal to X. The ordering of observations using
X therefore does not affect the null distribution of the test statistic. Since, for normally distributed
errors, the estimates c@ and s2 are independent, it follows that the null distribution of the statistic
is Student’s t.
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Although the null distribution of the test statistic is unaffected by the forward search, the value
of the noncentrality parameter is dependent on the search, since the values of the w

i
in the subset

will depend upon the ordering of the observations by the search. We now find an expression for
the mean of the test statistic, which shows its dependence on X.

Provided that s2 is estimated consistently, for example using s2
w

from (6), it follows from the
results in § 3·1 for a subset of size m+1 that, asymptotically,

E(t
c
)=E(c@−c

0
) qR+(w, w)s2 rD=Ac−c0s B AwTAw+ w*2

+
1+h

+
BD. (14)

This expression makes explicit the dependence of the value of t
c
not only on the difference between

c and c0 but also on the residuals of w after regression on X. If w lies almost in the space spanned
by X, the test will have low power even if the difference between c and c0 is not negligible. In such
cases, care needs to be taken with procedures, such as backward selection, which automatically
exclude variables with small t-values. Although in such cases w adds little in explanatory power
to a model already including X, it may provide a good model in combination with some of the
other variables.

3·4. Surgical unit data

Neter et al. (1996, pp. 334, 438) analyse 108 observations on the times of survival of patients
who had a particular kind of liver surgery. The four explanatory variables are as follows: x1 is a
blood clotting score; x2 is a prognostic index, which includes the age of the patient; x3 is an enzyme
function test score; and x4 is a score for liver function. The response is survival time. We follow
Neter et al. (1996) and use the logarithm to base ten of time as the response. The properties of a
test for this transformation are mentioned in § 5.

It seems clear when all 108 observations are fitted that the constant and the first three explanatory
variables are all highly significant, but that x4 need not be included in the model. We now investigate
how this conclusion depends on individual observations.

In order to use the method of added variables, each has to be omitted in turn and be treated as
the added variable w. Four forward searches are therefore used, each using three of the four
variables. The resulting plot of the four forward t-statistics is in Fig. 1. These curves behave as we
would hope: initially no variable is significant, although x3 is briefly significant at the 1% level
around m=20. The curves then rise smoothly to their values when m=n, with the nonsignificant
value of t4 showing seemingly random fluctuations.

Fig. 1. Transformed surgical unit data: forward plot of the four
added-variable t-statistics, t1 , t2 , t3 and t4 .
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In Fig. 1 we have included horizontal lines to indicate significance levels. These are based on
the normal distribution. Figure 2(a) repeats the curve for t4 in Fig. 1 but with confidence limits
calculated from the percentage points of the t-distribution and found by simulation of 10 000
samples. Theory and simulation agree: despite the ordering of observations by the searches, the
statistics follow the t-distribution.

Fig. 2. Transformed surgical unit data: (a) forward plot of added-variable
t-statistic for x4 , percentage points of the t-distribution and averages of
10 000 simulations; (b) correlation between predictions from fitting X and

the excluded variable.

Figure 1 suggests that x4 should be dropped from the model, a conclusion also reached by
Hoeting et al. (1996). Figure 2(b), based on the searches which produced Fig. 1, shows the corre-
lation between each residual added variable w* and the prediction y@ from regression on X. Variables
1, 2 and 3 have low correlations with the predictions when they are excluded from the fit. However,
x4 is highly correlated with the predictions from the other variables. This suggests it may be
important under the kind of data perturbations considered by Breiman (1996).

4. M 

4·1. T heory

Multiple outliers both can be hard to detect and can completely alter inferences about the
correctness of individual models. We now suppose that the data are contaminated by k mean shift
outliers, which will enter the search after the good observations; see § 2. The model for these
observations is

E(Y
+
)=X

+
b+w

+
c+D, (15)

with X
+

a k× ( p−1) matrix and the other vectors k×1; D is a vector of arbitrary shift parameters.
In order to show the effect of these outliers we extend (12) to the effect of adding several
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observations and obtain

R
+
(a, b)=R(a, b)+a*T

+
(I
k
+Hk
+
)−1b*
+
=aTAb+a*T

+
(I
k
+Hk
+
)−1b*
+
. (16)

Now a*
+

and b*
+

are k×1, I
k
is the k×k identity matrix and Hk

+
the k×k hat matrix for the extra

observations. Then the estimator of c can be written

c@=
wTAy+w*T

+
(I
k
+Hk
+
)−1y*
+

wTAw+w*T
+
(I
k
+Hk
+
)−1w*
+

. (17)

In (17)

w*
+
=w
+
−X
+
(XTX)−1XTw.

Since, from (1),

E(b@ )=b+ (XTX)−1wc,

E(c@)=c+
w*T
+
(I
k
+Hk
+
)−1D

wTAw+w*T
+
(I
k
+Hk
+
)−1w*
+

. (18)

The effect of the vector of shift parameters may be either to increase or to decrease E(c@) depending
on the signs of c, D and of w*

+
. As different variables are selected to be the added variable, the

effect of D will change depending on the various vectors w*
+
. However, the effect of D is always

modified by projection into the space orthogonal to X.
The effect of the outliers on the estimate of s2 is to cause it to increase. There will thus be a

tendency for the t-statistics to decrease after the introduction of the outliers even if c@ increases.
Figure 3 below shows evidence of this decrease.

4·2. Surgical unit data

We now modify the surgical unit data to show the effect of masked outliers on the forward plot
of t-statistics. The effect of the outliers is clear.

The data were modified by Hoeting et al. (1996), who added five outliers to the first 54 obser-
vations. We contaminate up to 12 observations in two different ways in order to produce two
different effects. The actual changes in the data are recorded in Table 1, with the forward plots of
the t-tests in Fig. 3. In Fig. 3(a) the effect of the modification has been to make x1 nonsignificant;
previously it was the most important variable. Since x1 is the added variable, the search orders
the observations using the regression model in only x2 , x3 and x4 . The plot very dramatically
shows that, for this search without x1 , the observations have been ordered with the outliers at the
end and that this group of observations has a dramatic effect on the added variable t-test for x1 .

Table 1. T he two contaminations of the surgical unit data leading to the behaviour
shown in Fig. 3; all logarithms are to base 10

Units contaminated Contamination

First contamination 8 10 18 31 42 45 50 95 log(3) added
28 73 75 103 log(3) subtracted

Second contamination 17 18 28 29 33 43 50 98 log(2) added

The plots of the forward t-tests for x2 and x3 in Fig. 3(a) show some peaks, followed by local
declines. These come from the inclusion of the outliers, which enter at different points in the
different forward searches and have less dramatic effects on the values of the t-statistics.

Figure 3(b) shows the effect of a different kind of contamination, which, in this case, makes x4
significant at the end of the search. The other variables remain significant, but the effect of the
outliers, entering earlier in the search is again evident, particularly for x1 .

At the end of § 4·1 it was argued that one effect of outliers was to inflate the estimate of s2 and
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Fig. 3. Modified transformed surgical unit data: forward plots of added-
variable t-statistics, t1 , t2 , t3 and t4 , with contaminations given in Table 1.
In (a) outliers render x1 nonsignificant; in (b) outliers make x4 significant.

so to shrink the values of the t-statistics. Comparison of the values of t2 and t3 in Fig. 1 with those
in Fig. 3(a) and Fig. 3(b) illustrates this argument.

These plots very clearly show the effect of the outliers on the t-tests for regression. Variable
selection using t-tests with the first contamination would lead to the incorrect dropping of x1 ; with
the second contamination it would lead to the incorrect inclusion of x4 in the model.

The contaminations have been designed so that the outliers are masked and are not readily
recognisable from statistics calculated from all the data. It is perhaps possible that they could be
found by a careful study of Q–Q and other plots of residuals and from the scatterplots of the data.
Certainly they are easily found using the forward plots of statistics, parameter estimates, Cook
distances and the other diagnostic measures exemplified in Atkinson & Riani (2000, Ch. 3), but
this is not the point. The purpose of our method is to discover precisely the effects of individual
observations on the t-tests for the variables included in the model. The plots in Fig. 3 do exactly
that. It is clear that a subset of observations are indicating a different model from the majority of
the data. The identities of these observations follow from the order in which the observations enter
the search. In both examples the contaminated observations were the last to enter the searches in
which inferences were changed.

5. D

The surgical unit data were analysed using the logarithm of time. A London School of Economics
research report by the authors uses the forward version of the constructed-variable test of Atkinson
(1973) for response transformation to assess this transformation. Although the test is similar in
form to the added-variable test of § 3·1, the statistic cannot have exactly a t-distribution as the
constructed variable is a function of the response. Thus the response and the constructed variable
are not independent and so the conditions for the t-distribution of t

c
in (7) do not hold. However,

the results of Atkinson & Riani (2002) show that, provided there is appreciable regression, the
projection matrix A ensures that the constructed-variable score test for transformations almost has
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a null t-distribution. This conclusion helps to interpret the results of Atkinson & Lawrance (1989),
where the null distribution of the statistic was found to vary with dataset.

Although the distribution of the test for transformation is only approximately t, the statistic for
the added-variable test for regressors, which is the subject of this paper, has been shown to follow
Student’s t-distribution. This behaviour is distinct from, and more useful for model identification
than, the behaviour of the standard t-tests during the forward search.
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