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This article provides distributional results for testing multiple outliers in regression.
Because direct simulation of each combination of number of observations and number of
parameters is too time consuming, three straightforward methods using truncated simple
samples are described for approximating the pointwise distribution of the test statistic.
Scaling factors are found to adjust for the number of parameters. The same simulations also
provide a powerful method of calibrating pointwise inferences for simultaneous tests for
an unknown number of outliers. Analysis of data on fidelity cards reveals an unexpected
group of outliers.
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1. INTRODUCTION

This article provides distributional results for testing multiple outliers in regression.
The likelihood ratio test is equivalent to testing a deletion residual and so is the test used,
for example, by Hadi and Simonoff (1993). We use distributional arguments for trimmed
samples, together with simple and quick simulations, to provide very good approximations
to the distribution of the test when a known number of outliers is present. We then make
efficient use of our simulations to derive the simultaneous properties of the series of tests
that occurs in the practical case when the number of outliers is not known.

There is, of course, a vast literature on the detection of multiple outliers in regression.
See, for example, Beckman and Cook (1983) or Barnett and Lewis (1994). A serious problem
is that of “masking”: if there are several outliers, least squares estimation of the parameters
of the model may lead to small residuals for the outlying observations. Single-deletion
methods (e.g., Cook and Weisberg 1982; Atkinson 1985) may fail and the outliers will
go undetected. Hawkins (1983) argued for exclusion of all possibly outlying observations,
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which are then tested sequentially for reinclusion.
The drawback to this procedure is that it is unclear how many observations should

be deleted and, because of masking, which ones, before reinclusion and testing begin. A
detailed discussion of the problem and many references were given by Billor, Hadi, and
Velleman (2000). The tables of Wisnowski, Montgomery, and Simpson (2001) contain the
results of an extensive simulation comparison of many outlier detection rules, in terms of
detection and false alarm rates. The purpose of this article is to present the null distribution
of the test statistic, together with simple approximations which are presented in cogent
plots.

In order to find the null distribution we use the forward search as described by Atkinson
and Riani (2000). It is an objective procedure of the type suggested by Hawkins (1983). It
starts from a small, robustly chosen, subset of the data and fits subsets of increasing size.
Each newly introduced observation can be tested for outlyingness before it is included in
the fitted subset. By repeated simulations we can find the distribution of the test statistic
when m of the n observations are fitted and the remaining n − m are tested, provided m

is known. Reuse of the simulations provides cheap calculation of significance levels for
simultaneous inference when m is unknown.

The article is organized as follows. Section 2 briefly reviews the forward search and
robust estimation; the implications for data analysis are stressed in Section 2.5. The forward
search depends on estimators from trimmed samples. We therefore write the outlier test
explicitly in terms of such samples and show how simulations using samples from trimmed
distributions with no regression structure can be used to provide good approximations to the
pointwise distribution of the statistic when m is known. Section 4 introduces a correction
for the effect of regression. We then show that the Bonferroni bound is irrelevant except
for finding the null distribution when testing for a single outlier. Section 6 uses an efficient
simulation method to find the simultaneous content of our pointwise bounds: the pointwise
significance may be as much as 10 times too large. Section 7 presents the analysis of
a regression example containing more than 500 units. We conclude with comments on
further work. Mathematical details are relegated to the Appendix. The emphasis throughout
is methodological: we find easily calculated approximations to the distribution of the test
statistic for both pointwise and simultaneous inference. Similar methods could be used to
investigate the properties of the non-null distribution or the distribution of robust estimators
where observations are either downweighted or trimmed.

2. THEORY

2.1 LEAST SQUARES

We start with standard results from least squares. In the regression model

y = Xβ + ε,

y is the n × 1 vector of responses, X is an n × p full-rank matrix of known constants, with
ith row xT

i , and β is a vector of p unknown parameters. The normal theory assumptions are
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that the errors εi are iid N(0, σ2).
With β̂ the least squares estimator of β the vector of least squares residuals is

e = y − ŷ = y − Xβ̂ = (I − H)y, (2.1)

where H = X(XT X)−1XT is the “hat” matrix, with diagonal elements hi and off-diagonal
elements hij . The mean square estimator of σ2 can be written

s2 = eT e/(n − p) =
n∑

i=1

e2
i/(n − p).

The likelihood ratio test for the agreement of observation yi with the remaining n − 1
observations under the normal theory assumptions is the deletion residual

r∗
i =

yi − xT
i β̂√

s2
(i)(1 − hi)

=
ei√

s2
(i)(1 − hi)

, (2.2)

where s2
(i) is the estimate of σ2 with observation i deleted. When the observation yi comes

from the same population as the other observations, r∗
i has a t distribution on n − p − 1

degrees of freedom. See, for example, Atkinson and Riani (2000, p. 24). However, if yi is
chosen to be tested because it has the most extreme value of r∗

i , the observed value needs to
be compared with the extreme order statistics from the t distribution. Grubbs (1950) gave
the theory for a simple sample from a normal population. There is, in addition, an effect due
to the slight under-estimation of σ2 from deletion of the largest value of |r∗

i | (see Figure 4,
p. 469).

2.2 THE FORWARD SEARCH

Let M be the set of all subsets of size m of the n observations. The forward search fits
subsets of observations of size m to the data, with m0 ≤ m ≤ n. We discuss the starting
point of the search in Section 2.3.

Let S
(m)
∗ ∈ M be the optimum subset of size m. Least squares applied to this subset

yields parameter estimates β̂(m∗) and s2(m∗), the mean square estimate of σ2 on m − p

degrees of freedom. Residuals can be calculated for all observations including those not in
S

(m)
∗ . The n resulting least squares residuals can from (2.1) be written as

ei(m∗) = yi − xT
i β̂(m∗). (2.3)

The search moves forward with the subset S
(m+1)
∗ consisting of the observations with the

m + 1 smallest absolute values of ei(m∗). When m < n the estimates of the parameters
are based on only those observations giving the central m residuals; β̂(m∗) and s2(m∗) are
calculated from truncated samples.

2.3 ROBUST ESTIMATION AND THE START OF THE SEARCH

The search starts from a subset of p observations S
(p)
∗ that is chosen to provide a

very robust estimator of the regression parameters. We use least median of squares (LMS,
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Rousseeuw 1984; Rousseeuw and Leroy 1987, sec. 4.4) that is defined as minimizing the
hth ordered squared residual e2

[h](β) with respect to β. Rousseeuw and Hubert (1997)
showed that taking h as the integer part of (n + p + 1)/2 is optimum. Algorithms for LMS
find an approximation to the estimator. They compare regression surfaces through all (or
randomly chosen) subsets of p observations and calculate the hth ordered residual e2

[h](β)

with respect to all n observations. The subset S
(p)
∗ is the set of p observations, out of the

subsets searched, that yields the minimum value of e2
[h](β). In this article we search 1,000

subsets. Provided any masking of outliers is broken, the search is insensitive to the starting
method. For instance, provided n >> p, which is the case in our simulations, we obtain
indistinguishable results if LMS is replaced by least trimmed squares (Rousseeuw 1984).
What is important for our present purpose is that the search uses parameter estimates based
on a central part of the sample.

2.4 TESTING FOR OUTLIERS

To test for outliers the deletion residual is calculated for the n − m observations not in
S

(m)
∗ . Analogously to (2.2) we obtain

r∗
i (m∗) =

yi − xT
i β̂(m∗)√

s2(m∗){1 + hi(m∗)} =
ei(m∗)√

s2(m∗){1 + hi(m∗)} . (2.4)

The notation hi(m∗) serves as a reminder that the leverage of each observation depends on
S

(m)
∗ . Let the observation nearest to those constituting S

(m)
∗ be imin where

imin = arg min |r∗
i (m∗)| for i /∈ S

(m)
∗ ,

the observation with the minimum absolute deletion residual among those not in S
(m)
∗ . If

observation imin is an outlier, so will be all other observations not in S
(m)
∗ .

To test whether observation imin is an outlier we use the absolute value of the minimum
deletion residual

r∗
imin

(m∗) =
eimin(m

∗)√
s2(m∗){1 + himin(m∗)} . (2.5)

The distribution of this statistic is the subject of this article.

2.5 IMPLICATIONS

The purpose of the robust starting point in Section 2.3 is to provide a “clean” subset of
the data, free of outliers. The procedure for moving forward in Section 2.2 ensures that we
always take the observations with the m smallest residuals, so that the set remains outlier
free for as long as possible.

At each step of the search we test whether observation imin is an outlier relative to the
m observations ∈ S

(m)
∗ . Because we have constructed S

(m)
∗ to be outlier free we are testing
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whether one observation is an outlier relative to a set of m nonoutlying observations. The
presence of the leverage measure himin(m

∗) in (2.5) ensures that the test only depends on
whether the outlier has a shifted mean relative to the observations in S

(m)
∗ . The position

of the remaining n − m − 1 potential outliers relative to the rest of the data affects the
joint properties of the residuals for these observations. But, by moving forward until we
encounter the first outlier we are breaking this complicated structure by extracting only the
least significant outlier. The unraveling effect of the forward search on a complicated outlier
structure is shown, for example, by Atkinson and Riani (2000, fig. 3.6).

In most applications there will only be a few outliers and interest will be in the end of
the search. However, the data may contain unsuspected subsets. For example, Neter, Kutner,
Nachtsheim, and Wasserman (1996, p. 334, p. 347) introduced two sets of 54 observations
on the logged survival time of patients undergoing liver surgery. Interest in a forward search
to check that the same model is suitable for the two groups of patients focuses on the center
of the search through the 108 combined observations. Again, in most examples, it will be
the upper simulation envelope that is important. However, an incorrect error distribution
may make the lower envelope important; a regression model with U-shaped beta errors is
an example.

3. SIMULATING THE DISTRIBUTION

The null distribution of (2.5) can be found by simulating numerous forward searches.
However, if a single search, with the starting procedure described in Section 2.3, takes one
minute, 10,000 searches take almost exactly one week. Our three alternatives rely on simple,
and much faster, ways of simulating variables with approximately the same distribution as
the ei(m∗). When m = n these residuals are distributed N{0, (1−hi)σ2}. But with m < n

the estimates of the parameters come from truncated samples. We use methods based on
truncated simple samples, when all hi(m∗) = 1/m, prove results about the equivalence
of the distribution to the required one and introduce a small sample correction factor that
allows for the effect of p. We thus require only one set of simulations for any n, regardless
of the dimension of the fitted linear model.

3.1 THE EMPIRICAL DISTRIBUTION

Figure 1 shows the distribution of the outlier test, the absolute minimum deletion
residual |r∗

imin
(m∗)|, from 10,000 simulations of a regression model when n = 100 and

p = 3. The values of the explanatory variables were independent standard normal random
variables as were the errors ε. Because least squares residuals do not depend on the value
of the parameters β, we took these as zero. The curves in the figure are the 1, 2.5, 5, 50, 95,
97.5, and 99% points of the empirical distribution. This shape is characteristic of all those
we shall see: initially the bands are wide where the variance is estimated on a few degrees of
freedom. The central part of the simulation is very stable, trending up only slightly. At the
end of the search the observations with large residuals enter the search and both lower and
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Figure 1. Empirical percentage points of the test for outliers for different levels of trimming: 10,000 forward
searches, n = 100, p = 3.

upper bands increase rapidly. As we shall see the values for m = n−1 can be approximated
by the Bonferroni inequality.

3.2 METHOD 1: TRUNCATED SAMPLES

The statistic is a function of the m residuals ei(m∗) ∈ S
(m)
∗ and of eimin(m

∗). In
the absence of outliers, these will be the observations with the m + 1 smallest values of
|ei(m∗)| (see Appendix A.1). As the ei(m∗) are residuals, their distribution does not depend
on the parameters β of the linear model. Since all observations in the simple sample have
the same leverage, all residuals have the same variance, which is to be estimated. To find
the required distribution we therefore simulate from a truncated normal distribution and
repeatedly calculate the value of the outlier test for such samples. The steps are:

Step 1. Obtain a random sample of m+1 observations Ui from the uniform distribution
on [0.5 − (m + 1)/2n, 0.5 + (m + 1)/2n].

Step 2. Use the inversion method to obtain a sample of m+1 from the truncated normal
distribution:

zi = Φ−1(Ui),

where Φ is the standard normal cdf

Step 3. Find the most outlying observation:

zimin = max |zi| i = 1, . . . , m + 1.

Then S
(m)
z = {zi|i /= imin = 1, . . . , m + 1}.
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Step 4. Estimate the parameters. Let z̄(m) be the mean of the m observations in S
(m)
z

and s2
z(m) be the mean square estimate of the variance.

Step 5. Calculate the simulated value of the outlier test in (2.5):

rz
imin

(m) =
zimin − z̄(m)

sz(m)
√{(m + 1)/m} =

ez
imin

(m)

sz(m)
√{(m + 1)/m} , (3.1)

where ez
i (m) = zi − z̄(m).

The simulation of the truncated normal distribution using the inversion method in Steps
1 and 2 is straightforward in S-Plus or R. Since in (3.1) we have estimated the sample mean,
rather than a regression model, himin(m) = 1/m.

In (3.1) rz
imin

is based on a random sample, rather than the regression residuals in (2.4).
We have the following:

Theorem 1. The distributions of the outlier tests rz
imin

(m) (3.1) and r∗
imin

(2.5) tend at
the same rate to the same limit as n → ∞ with m/n fixed.

The Theorem is proved in Appendix A.1.

3.3 METHOD 2: ORDERED OBSERVATIONS

In the forward search the n observations are ordered for each value of m. In the absence
of outliers this ordering does not change much during the search. As a second method of
approximating the distribution of the statistics, we simulate sets of n observations from
the normal distribution, correct for the mean to give residuals ez(n) and order the absolute
values of the residuals just once, before calculations begin. For each value of m we use
the m smallest values of the |ez(n)| to estimate the parameters; in the outlier test (2.5)
imin = i[m+1]. The procedure, which avoids a forward search for each simulation, is repeated
many times to give the empirical distribution of the outlier test.

3.4 METHOD 3: ORDER STATISTICS

Since (3.1) is a function of order statistics, we can use expected values of normal order
statistics to approximate the confidence intervals found by simulation.

Theorem 2. Approximate 100(1 − α)% confidence intervals for the outlier test from
(3.1) are given by

ζm+1,n ± σξΦ−1(α/2)
σT

√{(m + 1)/m} . (3.2)

where

ζm+1,n = Φ−1

{
8n + 8m + 7

4(4n + 1)

}
,

σ2
ξ =

(8m + 5)(8n − 8m − 3)

4n(4n + 1)2φ2
{

Φ−1
(

8m+5
2(4n+1)

)} ,
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Figure 2. Percentage points of the test for outliers for different levels of trimming: 10,000 forward searches, n
= 100. Dotted lines, Method 1, adjusted for regression. Continuous lines, empirical curves as in Figure 1. The
adjustment works well for the upper percentage points.

and

σ2
T = 1 − 2n

m
Φ−1

(
n + m

2n

)
φ

{
Φ−1

(
n + m

2n

)}
.

The proof is in Appendix A.2.

4. ADJUSTMENT FOR REGRESSION

In the three methods of Section 3 we estimate the sample mean, rather than a regression
model so himin(m) = 1/m. Simulations show that the shapes of the sets of curves are similar
to those in Figure 1, but that the variance is too small when we are analyzing regression data,
for which the average value of the hi is p/m. Multiplication of (3.1) by

√
(1+p/m) results

in a slight overcorrection. Empirically we find good agreement for the upper percentage
points of the distribution by using the adjusted statistic

radj
imin

(m) =

√
m + θp

m

zimin − z̄(m)
sz(m)

,

with θ = 0.7. The lower percentage points are not improved by this correction. However,
our interest is in detecting outliers, which give large values of the statistic. As m increases,
the effect of the correction decreases.

Figure 2 shows forward plots of the percentage points of the distribution of the test when
n = 100. The continuous lines are from 10,000 empirical simulations of a forward search,
whereas the dotted lines uses the faster approximation of Method 1. In the left-hand panel,
p = 3, and there is good agreement between the empirical method and the approximation,
except for the lower percentage points when m is small. In the right-hand panel, for p = 13,
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Figure 3. Percentage points of the test for outliers for different levels of trimming: 10,000 forward searches, n
= 100. Dotted lines, Method 3, adjusted for regression. Continuous lines, empirical curves as in Figure 2. The
adjustment works well for the upper percentage points when p = 13.

the approximation is only satisfactory for the upper percentage points, improving steadily
with m.

A similar plot in Figure 3, using Method 3, the expected values of order statistics,
shows that this method also works well for the upper percentage points when p = 13. The
plot for Method 2 is virtually indistinguishable from that for Method 1 and so is not given
here.

5. THE IRRELEVANCE OF BONFERRONI BOUNDS

The statistic (2.5) tests the m+1st largest residual for outlyingness. Hadi and Simonoff
(1994) used a Bonferroni bound to allow for the ordering of the residuals during their forward
search and compare (2.5) with the percentage points of tm−p{α/2(m + 1)} using s2(m∗)
to estimate the error variance.

The left-hand panel of Figure 4 shows the resulting 1, 2.5, and 5% bounds when p = 3
and n = 100, which are unrelated to the true distribution, apart from the last step of the
search; due to the low correlation of the residuals the bound is almost exact when m = n−1,
except for the slight effect of underestimation of σ2 mentioned in Section 2.1. Earlier in
the search the bounds are far too large, because s2(m∗) is treated as an estimate from a full
sample, rather than from the truncated sample that arises from the ordering of the residuals.
The surprising flatness of the bounds is caused by compensating changes in the percentage
point α/2(m + 1) and the degrees of freedom m − p.

Wisnowski et al. (2001, p. 360) reported that the procedure of Hadi and Simonoff
(1993) has a low detection rate for moderate and small outliers and an abnormally low false
alarm rate. The shape of the bounds in the left-hand panel of the figure shows that this is
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Figure 4. Percentage points of the test for outliers for different levels of trimming when p = 3. Dotted lines,
Bonferroni bounds; continuous lines, empirical curves as in Figure 1. Left-hand panel: 1, 2.5, and 5% bounds;
right-hand panel: 20% bound recommended by Wisnowski et al. (2001).

caused by rejection bands that are far too wide. Wisnowski et al. (2001) suggested using a
value of 20% for α. The right-hand panel of Figure 4 shows the resulting bounds. These are
still too wide in the centre of the search, although less so than before, but are now too narrow
at the end. As would be expected from this plot, the power of the procedure increases, but
so does the false alarm rate, as the bound is too tight when there are few, or no, outliers.
The conclusion is that Bonferroni bounds do not provide a useful guide for the values of
the statistic for testing a general number of outliers.

6. SIMULTANEOUS INFERENCE

Our methods provide approximations to the point-wise confidence intervals found in
Section 3.1 from 10,000 simulations of the forward search. We now use and extend an
argument by Buja and Rolke (2003) to make simultaneous inference about the significance
of the values of the test statistic observed over the search, or part of it. We find there is a
surprisingly high probability that, for example, any simulated curve is significant at the 5%
point at least once.

We perform N forward searches on simulated data. The ith simulation yields a curve
of simulated values of the statistic (2.5). The pointwise bounds in, for example, Figure 1 (p.
465) are found by ranking these values for each m. The ranked results of the ith simulation
are then a curve of values Rim, m ∈ [p, n − 1], i = 1, . . . , N . For each i we find the
maximum of Rim for m ∈ F , where F can be only part of the forward search. Let this
value for the ith search be RF

i . We thus obtain the empirical distribution of the RF
i , that is

of the maximum nominal significance level of RF
i for each search. The nominal percentage

significance level of these values is, to a good approximation, 100{(RF
i −3/8)/(N +1/2)}.
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Table 1. Simultaneous Inference: Nominal and Actual Significance Levels for the Last Half of the
Search When n = 100

Rank of statistic: j = Consecutive: k =
Nominal α 1 2 3 6 2 3

0.01 0.196 0.112 0.066 0.019 0.091 0.046
0.05 0.552 0.410 0.320 0.164 0.352 0.232

The empirical percentage level depends on the number of searches Ni which have values
of RF

l ≥ RF
i , l = 1, . . . , i − 1, i + 1, . . . , N . The empirical percentage level is therefore

100{(Ni − 3/8)/(N + 1/2)}. These sets of percentage points give Figure 5 and Table 1
when F is the last half of the search.

These results for 10,000 simulations when n = 100 and p = 3 show the extremely large
effect of simultaneous inference. The topmost curve in the left-hand panel of Figure 5 shows
the true significance level rapidly increasing with the nominal level. The right-hand panel
plots the same curve for the nominal values of up to 10% that are of interest in statistical
inference. The entries in Table 1 show that actual levels are at least ten times the nominal
levels.

In addition to the largest value of Rim for each i we can also find the jth largest value.
In Figure 5 we plot values up to j = 6. Increasing j decreases the true probability level, but
even the 1% nominal level for the sixth largest value has a true probability that is almost
twice the nominal value. The discrepancy is greater for the 5% point.

In analyzing forward plots we are often interested in the interpretation of broad peaks.
The method extends straightforwardly to successive k-tuples. Let mk = (m, . . . , m+k−1).

Figure 5. Nominal and simultaneous significance levels of the outlier test for a single maximum, n= 100, p =
3, F is the last half of the search. The curves, from the top downwards, are for the jth largest value, j = 1,. . .,6.
The nominal and true values would be the same on the straight line. Right-hand panel: zoom for values useful in
inference.
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Figure 6. Nominal and simultaneous significance levels of the outlier test for peaks of three observations, n =
100, p = 3, F is the last half of the search. The curves, from the top downwards, are for the jth largest value, j =
1, . . ., 6. The nominal and true values would be the same on the straight line. Right-hand panel: zoom for values
useful in inference.

Then for each mk ∈ F we find RF
ik, the minimum value of Rim. These k-tuples are

overlapping. We then proceed as before, but finding the empirical distribution of the jth
largest value of RF

ik rather than of RF
i . We base RF

ik on the minimum value of Rim over
each mk because we are interested in the least significant member of the k-tuple.

The results for k = 3 are in Figure 6 and Table 1. Comparison of the left-hand panels of
the two plots shows that the true significance for triples increases appreciably more slowly
with the nominal level than it does for single values, although the numbers are still large.
The right-hand panel indicates that the nominal 1% level for the fourth largest triple is close
to the true level: however, at the 5% level, the sixth largest triple is closest to correct.

7. LOYALTY CARDS

As an example to show the use of our simulation envelopes we take 509 observations

on the behaviour of customers with loyalty cards from a supermarket chain in Northern

Italy. The data are themselves a random sample from a larger database. The sample of 509

observations is available at www.riani.it/ trimmed. The response is the amount, in euros,

spent at the shop over six months and the explanatory variables are: x1, the number of visits

to the supermarket in the six month period; x2, the age of the customer and, x3, the number

of members of the customer’s family.

The data need transformation to achieve constant variance. We use the Box-Cox power

transformation. If we confine our attention to values of the transformation parameter which

are ratios of small integers (Box and Cox 1964), the indication is that transformation to the

http://www.riani.it/trimmed
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Figure 7. Loyalty cards, transformed data. The test for outliers with envelopes constructed with Method 2. The
zoom in the right-hand panel shows the effect of the cluster of outliers which are masked when m = n.

power 1/3 is needed; we work with this transformation for the rest of our analysis. However,

the forward plot of the asymptotically standard normal test for this transformation shows

that this value would be rejected for m around n−30. For a description of the plot (called a

“fan” plot) see Atkinson and Riani (2000, sec. 4.3), with distributional results in Atkinson

and Riani (2002).

We now see whether all observations agree with this model. Figure 7 is the forward plot

of the test for outliers. Because of the large number of observations we need to use one of

our approximate methods. Here we show results for Method 2 in which simulated samples

are ordered only once. Use of Method 1 gives plots that seem to us indistinguishable from

these. It is clear that, at the end of the search, there are several outliers, even when allowing

for the results of Section 6 on simultaneous inference for k-tuples. The outliers consist of

the last observations to enter the search which lie above the 99% simulation envelope. What

is interesting in the right-hand panel is that the final value of the statistic when m = n − 1

lies inside the envelope, so that the outliers are masked. The left-hand panel shows that for

the second half of the search, apart from the end, the outlier statistics wanders around in a

way that the results of Section 6 indicate are not significant.

The observations we have found are outlying in an interesting way. The left-hand panel

of Figure 8 is a scatterplot of y against x1. There is both some evidence of a relationship

between the variables and evidence of heteroscedasticity. The right-hand panel of the figure

is the scatterplot of the transformed response y1/3 against x1 (frequency) with the last 26

units to enter the forward search highlighted. We have identified a subset of individuals, most

of whom are behaving in a strikingly different way from the majority of the population. The

existence of such a group, who is spending less than would be expected, will be important

in any further modeling of the data.
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Figure 8. Loyalty cards: response against x1 (frequency). Left-hand panel, original data; right-hand panel,
transformed response, clearly showing the outliers. The last 26 units to enter the subset are plotted with crosses.

8. DISCUSSION

We have used three simple simulation methods to find the pointwise distribution of the
outlier test in regression and then reused our simulations to investigate the simultaneous
properties of these intervals. Our method could be used to confirm the number of outliers
by, in the example of Section 7, simulating envelopes for the remaining 509 − 26 = 483
observations and seeing whether the increase in the observed values visible in the right-hand
panel of Figure 7 around m = 480 lies within the sharply increasing envelope at the end of
this search.

In general, the forward search has provided an insightful framework for understanding
the series of tests that occur when the number of outliers is unknown. We could extend
our simulations in many ways, for example to the null distribution of the test defined by
the boundaries of the modified Bonferroni rule in Figure 4 (p. 469). The simulations can
also explore the distribution of many other quantities such as robust estimators that are
derived from truncated samples. We also see important applications in the development and
study of rules for the automatic clustering and classification of multivariate data. Finally,
we note that detection of multiple outliers in regression is as complicated as, and has much
in common with, the use of control charts for the detection of outliers from a mean over
time; a variety of rules are required depending on whether one or a few large outliers are to
be detected as opposed to a smaller change that affects several observations.

APPENDIX: PROOFS OF THEOREMS

A.1 THEOREM 1, METHOD 1: TRUNCATED SAMPLES

Progression of the Search. In normal progression S
(m+1)
∗ is formed by augmenting
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S
(m)
∗ with observation imin and the residuals come from the central part of a truncated

distribution. However if, for example, the first of a group of outliers is included in S
(m)
∗ ,

some other members of the outlying group /∈ S
(m)
∗ may have small residuals ei(m∗).

Due to this masking several of these observations may be included in S
(m+1)
∗ , while other

observations are excluded. Such interchanges only occur in the presence of outliers and so
can be ignored when we are simulating to find the null distribution of r∗

i . It is therefore
appropriate, as we have done, to sample from the center of a truncated distribution. A
thorough discussion of interchanges in the forward search was given by Atkinson, Riani,
and Cerioli (2004, pp. 68–69).

Distribution of Residuals. When m = n, the residuals ei(n) in (2.3) are distributed
N{0, (1 − hi)σ2}. For m < n the least squares estimates β̂(m∗) are linear combinations
of order statistics of normal random variables and are unbiased estimators of β, so that
E{ei(m∗)} = 0. We can therefore approximate the distribution of the ei(m∗) by sampling
from a distribution with zero mean. However, the distribution of the β̂(m∗) is not exactly
normal, so, although the yi are normal, the residuals ei(m∗) will only be asymptotically
normal. For results on the distribution of linear combinations of order statistics see, for
example, Csörgö (1983) or Bening (2000).

Theorem 3. The variance of ei(m∗) depends on the leverage hi(m∗) as does the
correlation of ei(m∗) and ej(m∗) on the off-diagonal element hij(m∗) of the hat matrix
H(m∗). Now trH(m∗) = p, so that h̄(m∗), the average value of hi(m∗), is p/m. Let
ψ = m/n, which is taken to stay constant with increasing n. Then h̄(m∗) = p/(nψ),
which decreases with increasing n. The off-diagonal elements hij(m∗) likewise decrease
with n.

For the simulated sample {zi}, hi(m) = hij(m) = 1/m = 1/(nψ), so that the
mean and variance of the ez

i (m) converge at the same rate as the ei(m∗) to the mean and
variance of the ei(m∗). Both sets of variables are also asymptotically normal as the effect
of estimation of the parameters decreases with n.

We are not directly concerned with the distribution of these residuals themselves, but
with convergence of the distribution of the test statistic rz

imin
to that of rimin . Since the two

statistics are the same function of the two sets of residuals, they will converge at the same
rate to the same limit. Our theorem is thus proved. Our simulated results show that this
convergence happens for relatively small sample sizes.

A.2 THEOREM 2, METHOD 3: ORDER STATISTICS

We use normal order statistics to approximate the individual terms of (3.1).
In the numerator of (3.1) zimin is the m + 1st largest order statistic of absolute values

from a sample of size n from a standard normal distribution. Its expectation is (Cox and
Hinkley 1974, p. 470) approximately

ζm+1,n = Φ−1{0.5 + 0.5(m + 1 − 3/8)/(n + 1/4)}.

If we let pξ = (m + 1 − 3/8)/(n + 1/4) and ξm+1,n = Φ−1(pξ), the variance of zimin
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(Stuart and Ord 1987, p. 331) is

σ2
ξ = pξ(1 − pξ)/{nφ2(ξm+1,n)}.

Because E(z̄) = 0, the asymptotic 100(1 − α)% normal theory confidence limits for the
numerator of (3.1) are

ζm+1,n ± σξΦ−1(α/2). (A.1)

We also require E{s2
z(m)}, the estimated variance of the truncated sample containing

the central m/n portion of the full distribution. Let

a− = 0.5 − m/(2n) and a+ = 0.5 + m/(2n),

so that

y− = Φ−1(a−) and y+ = Φ−1(a+).

Because of symmetry y− = −y+. The truncated normal distribution then has density

φT (y) = φ(y)/(a+ − a−) = nφ(y)/m, −y+ ≤ y ≤ y+.

The mean is zero and the variance

σ2
T =

{
1 − y+φ(y+) − y−φ(y−)

Φ(y+) − Φ(y−)

}
= {1 − 2ny+φ(y+)/m}. (A.2)

Asymptotically the numerator and denominator of (3.1) will be independent. If we take the
expectation of the ratio to be the ratio of the expectations, substitution of (A.1) and (A.2)
in (3.1) yields our required result (3.2).

[Received September 2004. Revised July 2005.]
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