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Abstract

The forward search provides a flexible and informative form of robust regression.
We describe the introduction of prior information into the regression model used
in the search through the device of fictitious observations. The extension to the
forward search is not entirely straightforward, requiring weighted regression. For-
ward plots are used to exhibit the effect of correct and incorrect prior information
on inferences.

1 Introduction

Methods of robust regression have been described in several books, for example
[2,6,14]. The recent comparisons of [12] indicate the superior performance of the
forward search (FS) in a wide range of conditions. However, none of these meth-
ods includes prior information; they can all be thought of as developments of least
squares. The purpose of the present paper is to show how prior information can be
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incorporated into FS for regression and to give some results indicating the compar-
ative performance of this Bayesian method.

In order to detect outliers and departures from the fitted regression model in the
absence of prior information, the FS uses least squares to fit the model to subsets
of m observations, starting from an initial subset of m0 observations. The subset is
increased from size m to m + 1 by forming the new subset from the observations
with the m + 1 smallest squared residuals. For each m (m0 ≤ m ≤ n − 1), we test
for the presence of outliers, using the observation outside the subset with the smallest
absolute deletion residual.

The specification of prior information and its incorporation into the FS is derived
in Sect. 2. Section3 presents the algebraic details of outlier detection with prior infor-
mation. Forward plots in Sect. 4 show the dependence of the evolution of parameter
estimates on prior values of the parameters. In the rest of the paper the emphasis
is on forward plots of minimum deletion residuals which form the basis for outlier
detection. These plots are presented in Sect. 4 for correctly specified priors and, in
Sect. 4, for incorrect specifications. It is argued that use of analytically derivable
frequentist envelopes is also suitable for Bayesian outlier detection when the priors
are correctly specified. However, serious errors can occur with misspecified priors.

2 Prior Information in the Linear Model from Fictitious
Observations

In the regression model without prior information y = Xβ + ε, y is the n × 1 vector
of responses, X is an n × p full-rank matrix of known constants, with i th row xTi ,
and β is a vector of p unknown parameters. The normal theory assumptions are that
the errors εi are i.i.d. N (0, σ 2).

In some of the applications inwhichwe are interested, for example fraud detection
[7], we have appreciable prior information about the values of the parameters. This
can often conveniently be thought of as coming from n0 fictitious observations y0
with matrix of explanatory variables X0. Then the data consist of the n0 fictitious
observations plus n actual observations. The search in this case now proceeds from
m = 0, when the fictitious observations provide the parameter values for all n resid-
uals from the data; the fictitious observations are always included in those used for
fitting, their residuals being ignored in the selection of successive subsets.

There is one complication in combining this procedure with the forward search,
which arises from the estimation of variance from subsets of observations. If we
estimate σ 2 from all n observations, we obtain an unbiased estimate of σ 2 from the
residual sumof squares. However, in the frequentist searchwe select the centralm out
of n observations to provide the mean square estimate s2(m), so that the variability
is underestimated. To allow for estimation from this truncated distribution, let the
variance of the symmetrically truncated normal distribution containing the central
m/n portion of the full distribution be σ 2

T (m). See [10] for a derivation from the
general method of [15]. We take as our approximately unbiased estimate of variance
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s2T = s2(m)/σ 2
T = s2(m)/c(m, n). In the robustness literature c(m, n) is called a

consistency factor [5,13].
In the Bayesian procedure, the n0 fictitious observations are treated as a sample

with variance σ 2. However, the m observations from the actual data come from
a truncated distribution with variance c(m, n)σ 2, which must be adjusted before
the two samples are combined. This becomes a standard problem in weighted least
squares (for example, [9, p. 230]). Let y+ be the (n0 + m) × 1 vector of responses
from the fictitious observations and the subset and let the covariance matrix of these
observations be σ 2G, with G a diagonal matrix. Then the first n0 elements of the
diagonal of G equal one and the last m elements have the value c(m, n). In the least
squares calculations we need only to multiply the elements of the sample values of y
and X by c(m, n)−1/2. The residual mean square error from this weighted regression
provides the estimate σ̂ 2(m).

The prior information can also be specified in terms of prior distributions of the
parameters β and σ 2. The details and relationship with fictitious observations are
given by [4] as part of a study of Bayesian methods for outlier detection and by [3]
in the context of the forward search.

3 Algebra for the Bayesian Forward Search

Let S∗(m) be the subset of size m found by FS, for which the matrix of regressors is
X (m).Weighted least squares on this subset of observations plus X0 yields parameter
estimates β̂(m) and σ̂ 2(m), the latter on n0 + m − p degrees of freedom. Residuals
can be calculated for all n observations including those not in S∗(m). The n resulting
least squares residuals are ei (m) = yi − xTi β̂(m), (i = 1, . . . , n).

The search moves forward with the augmented subset S∗(m + 1) consisting of
the observations with the m + 1 smallest absolute values of ei (m). To start we take
m0 = 0, since the prior information specifies the values of β and σ 2.

To test for outliers the deletion residuals are calculated for the n − m observations
not in S∗(m). These residuals are

ri (m) = ei (m)/[σ̂ 2(m){1 + hi (m)}]0.5, (1)

where the leverage hi (m) = xTi {XT
0 X0 + X (m)TX (m)/c(m, n)}−1xi . Let the obser-

vation nearest to those forming S∗(m) be imin = argmini /∈S∗(m) |ri (m)|. To test
whether observation imin is an outlier we use the absolute value of the minimum
deletion residual

rimin(m) = eimin(m)/[σ̂ 2(m){1 + himin(m)}]0.5, (2)

as a test statistic. If the absolute value of (2) is too large, the observation imin is
considered to be an outlier, as well as all other observations not in S∗(m).



4 A.C.Atkinson et al.

4 Example 1: Correct Prior Information

To explore the properties of FS including prior information, we use simulation to pro-
vide forward plots of the distribution of quantities of interest during the search. These
simulations are intended to complement the analysis of [3] based on the Windsor
housing data introduced by [1]. In these data there are 546 observations on regression
data with four explanatory variables and an intercept, so that p = 5. Because of the
invariance of least squares results to the values of the parameters in the regression
model, we simulated the responses as independent standard normal variables with
all regression coefficients equal to zero. The explanatory variables were likewise
independent standard normal, simulated once for each set of simulations, as were
the fictitious observations providing the prior. We took n = 500 in all simulations
reported here and repeated the simulations 10,000 times.

Figure1 shows forward plots of the parameter estimates when there is relatively
weak prior information (n0 = 30). Because of the symmetry of our simulations in
the coefficients β j , the left-hand panel arbitrarily shows the evolution of β̂3. From
the simulations all other linear parameters give indistinguishable plots. The plot is
centred around the simulation value of zero with quantiles that decrease steadily
and smoothly with m. The right-hand panel is more surprising: the estimate of σ 2

decreases rapidly from the prior value of one, reaching a minimum value of 0.73
before gradually returning to one. The effect is due to the value of the asymptotic
correction factor c(m, n) which is too large. Further correction is needed in finite
samples. Reference [8] use simulation to make such corrections in robust regression,
but not for the FS.

The differing widths of bands in the two panels serve as a reminder of the compar-
ative variability of estimates of variance. Reference [3] give the plot for stronger prior
information when n0 = 500. With equal amounts of prior and sample information
at the end of the search, the bands for β̂3 are appreciably more horizontal than those
of Fig. 1. However, the larger effect of increased prior information is in estimation
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Fig.1 Distribution of parameter estimateswhenβ3 = 0 andσ 2 = 1.Left-hand panel β̂3, right-hand
panel σ̂ 2; weak prior information (n0 = 30; n = 500). 1, 5, 50, 95 and 99% empirical quantiles
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Fig.2 The effect of correct prior information on forward plots of minimum deletion residuals. Left-
hand panel, weak prior information (n0 = 30; n = 500).Right-hand panel, strong prior information
(n0 = 500; n = 500), 10,000 simulations; 1, 50 and 99%empirical quantiles.Dashed lines, without
prior information; heavy lines, with prior information

of σ 2, which now has a minimum value of 0.97 and appreciably narrower bands for
the quantiles.

The parameter estimates form an important component of the forward plots of
minimum deletion residuals. The plots of these residuals, which are the focus of the
rest of this paper, are the central tool for the detection of outliers in the FS. Outliers
are detected when the curve for the sample values falls outside a specified envelope.
The actual rule for detection of an outlier has to take account of the multiple testing
inherent in the FS (once for each value of m). One rule, yielding powerful tests of
the desired 1% size, is given by [10] for multivariate data and by [11] for regres-
sion. The procedure has two stages, in the second of which envelopes are required
for a series if values of n. The left-hand panel of Fig. 2 shows the envelopes for
weak prior information (n0 = 30), together with those from the FS in the absence
of prior information. Unlike the Bayesian envelopes, those for the frequentist search
are found by arguments based on the properties of order statistics. In this panel the
frequentist and Bayesian envelopes agree for all except sample sizes around 100 or
less. In the right-hand panel the prior information is stronger, with n0 = 500. The
upper envelopes for procedures with and without prior information agree for the
second half of the search. For the 1 and 50% quantiles the values of the statistics
in the absence of prior information are higher than those in its presence, reflect-
ing the increased prevalence of smaller estimates of σ 2 in the frequentist search. In
general, the agreement in distribution of the statistics is not of central importance,
since the envelopes apply to different situations. One important, although expected,
outcome is the increase in power of the outlier tests that comes from including prior
information, which is quantified by [3]. Also important is the agreement of frequen-
tist and Bayesian envelopes towards the end of the search, which is where outlier
detection usually occurs. This agreement allows us to use the frequentist envelopes
when testing for outliers in the presence of prior information. Such envelopes can
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be calculated analytically, avoiding the time consuming simulations that are needed
when envelopes for different values of n are required.

5 Example 2: Incorrect Prior Information

In the housing data analysed by [3], there is evidence of incorrect specification of
the prior values of some parameters. The effect of misspecification of σ 2 is easily
described; estimates of β remain unbiased, although with a changed variance com-
pared with those when the specification is correct. The estimate of σ 2 also behaves
in a smooth fashion; initially close to the prior value it moves steadily towards the
sample value.

The effect of misspecification of β is more complicated since both β̂ and σ̂ 2 are
affected. There are two effects. The effect on β̂ is to yield an estimate thatmoves from
the prior value to the sample value in a sigmoid manner. Because of the biased nature
of β̂, the residual sum of squares is too large and σ̂ 2 rapidly moves away from its
correct prior value. As sample evidence increases the estimate gradually stabilises
and then moves towards the sample value. There are then two conflicting effects
on the deletion residuals; an increase due to incorrect values of β and a reduction
in the residuals due to overestimation of σ 2. Plots illustrating these effects on the
parameter estimates are given by [3]. Here we show the effect of misspecification of
β on envelopes like those of Fig. 2.

Our interpretation of Fig. 2 was that the frequentist envelopes could be used for
outlier identification with little change of size or loss of power in the outlier test
compared with use of the envelopes for the correctly specified prior. We focus on
this aspect in interpreting the envelopes from an incorrectly specified prior.
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Fig. 3 The effect of incorrect prior information on forward plots of minimum deletion residuals;
β0 = 1.5. Left-hand panel, n0 = 6, right-hand panel, n0 = 100, 10,000 simulations; 1, 50 and 99%
empirical quantiles. Dashed lines, without prior information; heavy lines, with prior information
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Fig. 4 The effect of increased incorrect prior information on forward plots of minimum deletion
residuals; β0 = 1.5. Left-hand panel, n0 = 250, right-hand panel, n0 = 350, 10,000 simulations;
1, 50 and 99% empirical quantiles.Dashed lines, without prior information; heavy lines, with prior
information

In the simulations all values of β were incremented by 1.5. In the left-hand panel
of Fig. 3 we take n0 = 6. Initially the envelopes lie above the frequentist bands, with
a longer lower tail. Interest in outlier detection is in the latter half of the envelopes,
for which the true envelopes lie below the frequentist ones; the residuals tend to be
smaller and outliers would be less likely to be detected even at the very end of the
search. In the right-hand panel, n0 has been increased to 100. The result is to increase
the size of the residuals at the beginning of the search. However, in the second half,
the correct envelopes for this prior lie well below the frequentist envelopes; although
outliers would be even less likely to be detected than before, the series of residuals
lying well below the envelope would suggest a mismatch between prior and data.

Figure4 shows two further forward plots of envelopes of minimum deletion resid-
uals but now with greater prior information. In the left-hand panel n0 = 250 and in
the right-hand panel the value is 350. The trend follows that first seen in the right-
hand panel of Fig. 3. In the first half of the search the envelopes continue to rise above
the frequentist bands—very large residuals are likely at this early stage, which will
provide a signal of prior misspecification. However, now, the envelopes for the right-
hand halves of the searches are coming closer together. Particularly for n0 = 350,
there are unlikely to be a large number of residuals lying below the frequentist bands,
although outliers will still have residuals that are less evident than they would be
using the correct envelope.

This discussion suggests that forward plots of deletion residuals can provide one
way of detecting a misspecification of the prior distribution. Similar runs of too
small residuals can also be a sign of other model misspecification; they can occur,
for example, in the frequentist analysis of data with beta distributed errors under
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the assumption of normal errors. The analysis of the housing data presented by
[3] provides examples of the effect of prior misspecification on forward plots of
minimum deletion residuals.
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